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Note From the Editor

Since issue 42-118, published on August 15, 1994, The Telecommunications and

Data Acquisition Progress Report has been available to readers at JPL in both

printed and electronic form as a pilot program, with the goal of ultimately publish-

ing the TDA Progress Report electronically. Now produced through the use of newly
available software that has proven user friendly, the electronic TDA Progress Report

has received quite favorable comments from its JPL readers. Consequently, begin-

ning with this issue, the TDA Progress Report will be available electronically to
all its readers on the World Wide Web at http://tda.jpl.nasa.gov/progress-report.

Printed copies are also being produced, but we are considering the possibility of

publishing the TDA Progress Report solely in electronic form sometime in the fu-
ture. Readers with questions or concerns regarding this change are welcome to

contact the editor.
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Preface

This quarterly publication provides archival reports on developments in programs

managed by JPL's Telecommunications and Mission Operations Directorate (TMOD),

which now includes the former Teleconmmnications and Data Acquisition (TDA) Office.

In space communications, radio navigation, radio science, and ground-based radio and

radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning,

supporting research and technology, implementation, and operations. Also included are

standards activity at JPL for space data and information systems and reimbursable

DSN work performed for other space agencies through NASA. The preceding work is
all performed for NASA's Office of Space Communications (OSC).

TMOD also performs work funded by other NASA program offices through and

with the cooperation of OSC. The first of these is the Orbital Debris Radar Program

funded by the Office of Space Systems Development. It exists at Goldstone only and

makes use of the planetary radar capability when the antennas are configured as science

instruments making direct observations of the planets, their satellites, and asteroids of

our solar system. The Office of Space Sciences funds the data reduction and science

analyses of data obtained by the Goldstone Solar System Radar. The antennas at all

three complexes are also configured for radio astronomy research and, as such, conduct

experiments funded by the National Science Foundation in the U.S. and other agencies

at the overseas complexes. These experiments are either in microwave spectroscopy or

very long baseline interferometry.

Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech
President's Fund that involve TMOD are included.

This and each succeeding issue of The Telecomm.uTtications and Data Acquisition

Progress Report will present material in some, but not necessarily all, of the aforemen-

tioned programs.
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Determination of the Position of Jupiter

From Radio Metric Tracking

of Voyager I

W. M. Folkner

Tracking Systems and Application Section

R. J. Haw

Navigation Systems Section

The Voyager I spacecraft flew by Jupiter on March 5, 1979. Spacecraft navigation

was performed with radio tracking data from NASA's Deep Space Network. In

the years since then, there has been a great deal of progress in the definition of

celestial reference frames and in determining the orbit and orientation of the Earth.

Using these improvements, the radio metric range and Doppler data acquired from

the Voyager 1 spacecraft near its encounter with Jupiter have been reanalyzed to

determine the plane-of-sky position of ,Jupiter with much greater accuracy than

was possible at the time of the encounter. The position of Jupiter at the time

of encounter has been determined with an accuracy of 40 nrad in right ascension

and 140 nrad in declination with respect to the celestial reference frame defined by

the International Earth Rotation Service. This position estimate has been done to

improve the ephemeris of Jupiter prior to the upcoming encounter of the Galileo

spacecraft with Jupiter.

I. Introduction

Radio metric tracking data have been used since the inception of interplanetary space exploration to

determine the trajectory of the robotic probes. Several analyses have been written that describe the

ability of radio metric data to determine the position of interplanetary spacecraft [1-3]. The ability

to determine the plane-of-sky position of spacecraft comes from the signature imposed on the spacecraft

radio signal by the rotation and orbital motion of the Earth. This signature can be analyzed to determine

the right ascension and declination of the spacecraft. There is also a signature in the spacecraft radio

signal due to the acceleration caused by a nearby planetary body, which can be used to determine the

position of the spacecraft with respect to the planetary body. The combined signatures can be used to

determine the position of the planet at the time of the spacecraft encounter.

The diurnal signature ill the radio metric data gives information about the spacecraft right ascension

and declination with respect to the direction of the Earth's spin axis at the time of the measurement.

The direction of the Earth's spin axis and the orbit of the Earth with respect to a desired inertial celestial

coordinate system must be known in order to use the radio metric data to deduce the inertial coordinates

of the spacecraft.



The determination of the orbit and orientation of the Earth has been a field of intensive study. The

introduction of routine very long baseline interferometry (VLBI) observations in the early 1980's has

enabled the definition of a celestial reference frame, defined by the positions of extragalactic radio sources,

with internal consistency of about 5 nrad (e.g., see [4]). This is about a factor of 100 better than optical

star catalogs previously used to define the celestial reference frame (e.g., see [5]). The orientation of the

Earth is measured by VLBI with an accuracy of about 5 nrad with respect to the extragalactic radio

sources. Beginning in 1988, the International Earth Rotation Service (IERS) was formed to facilitate

reporting Earth orientation in a standard way. The IERS adopted a conventional celestial reference frame

defined by the positions of extragalactic radio sources. Earth orientation measurements with respect to

the IERS celestial reference frame are regularly distributed [6]. Since about 1970, the orbits of the Earth,

Moon, and Mars have been determined with an internal accuracy of about 5 nrad from the analysis of

ranging data to the Viking landers and lunar laser ranging (LLR) [7]. The LLR data can also be used to
determine the orientation of the Earth with respect to the Earth's orbit. Comparison of LLR and VLBI

Earth orientation has been used to determine the orientation of the Earth's orbit with respect to the

IERS celestial reference frame with an accuracy of about 15 nrad [8].

The ephemerides of the outer planets have been heavily dependent on optical astrometric measurements

due to a scarcity of more accurate measurements. The limited accuracy of the ground-based optical

astrometric data, and the uncertainty in orientation of the optical reference frame with respect to the

radio reference frame, contributed to an apparent discrepancy in the position of Jupiter of 400 km

during the Ulysses spacecraft Jupiter encounter in February 1992 [9]. This discrepancy and the upcoming
encounter of the Galileo spacecraft with Jupiter in December 1995 prompted a reanalysis of radio tracking

data from the Voyager 1 encounter with Jupiter to provide a radio metric position of Jupiter referred to
the IERS celestial reference frame.

The closest approach of the Voyager 1 spacecraft to Jupiter occurred on March 5, 1979. Shortly after
the closest approach to Jupiter, the spacecraft flew within 21,000 km of Io and then within 150,000 km of

Ganymede and Callisto. Navigation of Voyager 1 was performed using radio range and Doppler measure-
ments by the Deep Space Network and by using images of the satellites of Jupiter against background

stars taken by the onboard camera [10,11]. The Voyager 1 navigation provided a determination of the

Earth-Jupiter range at the time of encounter 1 and data for the improvement of the ephemerides of the

satellites of Jupiter [12]. However, the large uncertainty of the orientation of the Earth with respect to
the Earth's orbit at that time prevented a useful improvement in the plane-of-sky position of Jupiter.

A reanalysis of the Voyager 1 radio tracking data, based on the previous work of the Voyager 1 naviga-

tion team and with updated models for the orbit and orientation of the Earth, has been performed to

determine the right ascension and declination of Jupiter at the time of the Voyager 1 encounter.

II. Method

Two-way Voyager 1 tracking data were acquired by an antenna from the Deep Space Network trans-

mitting a signal to the spacecraft at a frequency near 2.1 GHz (S-band) with the spacecraft receiving and
coherently retransmitting the signal to Earth at 2.3 GHz or 8.4 GHz (X-band). The data employed for

the reanalysis spanned 32 days, ending a few hours after the closest approach to Jupiter and before the

encounter with Io. Doppler measurements were made by comparing the frequency of the received carrier
with the transmitted carrier at the DSN antenna. Range measurements were made by determining the

delay between the time of transmission of a range code (a set of coherent tones about the carrier) and

the time of reception of the retransmitted range code. The dominant noise on the measurements was due
to variations in the charged particle distribution between Earth and the spacecraft, mostly due to solar

plasma. For much of the time, Voyager 1 transmitted coherent signals at both 2.3 and 8.4 GHz. For the

reanalysis, only dual-band downlink data were used. Because the charged particle effects are proportional

1 j. K. Campbell, "Earth-Jupiter Range Fixes From Voyager," JPL Interoffice Memorandum 314.8-351 (internal document),
Jet Propulsion Laboratory, Pasadena, California, 1982.



to the inverse of the square of the carrier frequency, the dual-band downlink provides a measure of the

charged particle effects on the downlink signal. By interpolating the charged particle effects to the time

of the uplink, it was possible to remove most of the effect on the tracking data. At the beginning of a

tracking pass, there are no dual-band downlink measurements near the time of the uplink signal, so larger

residuals are expected for the first 75 minutes (one round-trip light time) of each tracking pass.

The spacecraft trajectory was integrated from initial position and velocity conditions using models for

the dynamic forces on the spacecraft. The modeled gravitational forces on the spacecraft were due to

the masses of the Sun and planets, the Galilean satellites, and the oblateness of Jupiter. The relative

locations of the Sun and planets were based on the JPL ephemeris labeled DE200 [13] but rotated so that

the orbit of the Earth had the correct orientation with respect to the IERS celestial reference frame at

the time of encounter [8]. The positions of the Galilean satellites were given by Lieske [12]. The masses of

the Jovian system and the oblateness of Jupiter are given by Campbell and Synnott [11]. Other modeled

forces were solar radiation pressure and thruster firings.

The Voyager 1 spacecraft is three-axis stabilized using unbalanced thrusters. Because of torques

acting on the spacecraft (mainly due to solar pressure), the thrusters repeatedly fire to maintain a

specified orientation. These thruster firings produce small velocity changes to the spacecraft trajectory.

Changes in the orientation of the spacecraft caused a change in the torque on the spacecraft and a

change in the pattern of the thruster firings. Information about the thruster firings was encoded in the

spacecraft telemetry stream, but this information was imperfect. Instead of relying on the incomplete

telemetry information, the magnitudes of the thruster firings were estimated using two models. Constant

accelerations were estimated while the spacecraft was in a fixed attitude, to approximate the nearly

constant thruster firings needed to maintain the attitude. Impulsive maneuvers were estimated for larger

events associated with changes in the spacecraft orientation. In addition, there was one larger impulsive

maneuver 12.5 days before Jupiter encounter to correct the spacecraft trajectory. Table 1 gives the

acceleration and maneuver times included in the reanalysis. Some information about the history of the

spacecraft orientation is no longer available, so some of the events in Table 1 were inferred from an

examination of the tracking data. In principle, the only consequence of estimating too many maneuvers

and accelerations is to weaken the solution.

Table 1. Modeled thruster firing times.

Maneuver time, Acceleration start time,
1979 1979

February 4, 00:00 February 1, 00:00

February 5, 12:00 February 4, 08:30

February 9, 04:02 February 5, 12:00

February 17, 00:00 February 9, 04:00

February 18, 18:00 February 11, 02:00

February 19, 00:00 February 15, 00:00

February 21, 03:58 February 17, 15:00

March 1, 23:00 February 19, 05:00

March 3, 20:00 February 21, 18:00

March 4, 00:00

Computed values for the tracking measurements were derived from nominal values for the spacecraft

epoch state, force models, inertial Deep Space Station locations, and calibration for propagation delays

due to Earth troposphere [14]. A least-squares fit to the observed minus computed measurement values

was made to estimate model parameters. The estimated parameters included the spacecraft initial state,



the position of Jupiter, the direction of Jupiter's spin axis, a range bias for each DSN antenna, and

parameters to describe the thruster firings. Locations for the stations of the DSN were consistent with

the IERS terrestrial reference frame [15]. The station locations were mapped from Earth-fixed locations

to inertial space using models for precession, nutation, and solid Earth tides, and calibrations for polar

motion and length-of-day variations and corrections to the standard nutation model in the manner defined

by the IERS.

The estimated uncertainty for the spacecraft trajectory depended on assumed a priori uncertainties

for the estimated parameters, the assumed data arc and data weights, and a priori uncertainties for

model parameters that are not estimated. The effect of uncertainties of nonestimated model parameters

is included through the use of consider analysis [16]. The assumed a priori information for estimated

and consider parameters is summarized in Table 2. The a priori uncertainties for spacecraft initial

state were large enough to leave it essentially unconstrained. The thruster firing uncertainty levels were
based on the level of variation as recorded by the telemetry information [10] and by checking that the

estimated corrections to the acceleration were significantly smaller than the a priori uncertainty. The

uncertainties in the position of Jupiter and in the Jupiter spin axis direction were set large enough to
not influence the solution. Because range calibrations were not recovered for the reanalysis, the DSN

range bias uncertainties were set to a value corresponding to the total delay through the ground station.
DSN station locations are currently known with about a 3-cm accuracy [15], but because of uncertainty

in the rate of change of station locations due to plate tectonics, this was increased to a 10-cm uncertainty
for the 1979 encounter data (and was large enough to include uncertainties in Earth orientation). The

uncertainty in the orientation of tile Earth's orbit comes from the comparison of VLBI and LLR Earth

orientation [8]. The uncertainty in the troposphere calibration is taken from Robinson. 2 The uncertainties

in the mass and oblateness of Jupiter's gravity field are given by Campbell and Synnott [11].

III. Results

Figures 1 and 2 show tile post-fit data residuals. Some small signatures can be seen in tile Doppler

data ill Fig. 1. These are most apparent at the beginning of tracking passes and are probably due to

residual solar plasma effects. The Doppler residuals have a root-mean-square (rms) of 0.1 mm/s. Most

of the data points have averaging times much longer than the standard 60 s. If the data noise is assumed
to be white-frequency noise, then the Doppler data residuals correspond to an rms of 0.3 mm/s for a 60-s

averaging time. The solar plasma is known to impose more noise on the Doppler data at low frequencies

[17], so for the final estimate, the Doppler data were conservatively weighted at 1-mm/s uncertainty for a
60-s count time, even though the solar plasma was partially calibrated. The conservative weighting of the

Doppler data prevents the small signatures in the Doppler data from excessively influencing the solution
estimates and increases the formal uncertainty. The range data have an rms of 3.2 m and were weighted

at 4 m in the solution.

Tables 3 and 4 give the estimated position of the barycenter of the Jupiter system at a time near the

closest approach of the Voyager 1 spacecraft in Cartesian and spherical coordinates. Because Jupiter is

within the solar system, the light time significantly affects the apparent position of Jupiter. To avoid

complications of light-time calculation, time transformations, and other effects, Tables 3 and 4 give

the instantaneous Earth Jupiter vector in the IERS celestial reference frame. That is, the Earth Jupiter
vector is the difference between the position of Jupiter at the specified solar-system barycentric coordinate

time (TDB) and the position of the Earth at the same coordinate time. For reference, the Earth Jupiter

vector is also given in the widely available ephemeris DE200.

2 s. E. Robinson, "Errors in Surface Model Estimates of Zenith Wet Path Delay's Near DSN Stations," JPL Interoffice
Memorandum 335.4-594 (internal document), Jet Propulsion Laboratory, Pasadena, California, 1986.
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Fig. 1. Voyager 1 S-band Doppler data residuals.
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Fig. 2. Voyager 1 S-band range residuals.

The uncertainties in Table 4 correspond to 40 nrad in right ascension and 140 nrad in declination.

The given uncertainties are expected to reflect the actual uncertainties as realistically as possible. The

actual uncertainties are dependent on the spacecraft thruster firing history, which cannot be easily recon-

structed at this late date. As a check for errors in modeling assumptions, separate fits were made using

only the first 16 days of data within the arc and with only the last 16 days of data. In each case, the esti-

mated position of Jupiter agreed with the value given in Table 3 within 1 sigma. The uncertainty in the

Earth-Jupiter range is due to not having the ranging system calibrations available for the reanalysis. The



Table 2. Estimated and considered parameters

and their uncertainties.

Estimated parameters Uncertainty

Spacecraft initial position

Spacecraft initial velocity

Impulsive maneuvers (each component)

Thruster accelerations (each component)

Jupiter right ascension

Jupiter declination

Earth-Jupiter range

Jupiter spin axis, right ascension

Jupiter spin axis, declination

DSN range biases

105 km

100 km/s

1 cm/s

10 -11 km/s 2

500 nrad

500 nrad

100 km

0.1 deg

0.1 deg

3 km

Consider parameters Uncertainty

DSN station locations

Earth orbit orientation with respect

to IERS frame

Troposphere zenith delay

Jupiter mass (GM)

Jupiter oblateness (J2)

10 cm

15 nrad

4 cm

100 km3/s 2

0.01 percent

Table 3. Cartesian coordinates of Jupiter on March 5, 1979,

12:00:00.000 TDB.

Position x, km y, km z, km

Estimated position -339109994 536319388 241482423

Position in DE200 -339110282 536319389 241481691

Table 4. Spherical coordinates of Jupiter on March 5, 1979, 12:00:00.000 TDB.

Position Range, km Right ascension Declination

Estimated position 678931392 -t- 3 8 h 9 min 13.1531 s =[: 0.0005 s 20 ° 50 t 6.487" =k 0.028"

Position in DE200 678931276 8 h 9 min 13.1584 s 20 ° 50 t 6.262"

right ascension and declination estimated for Jupiter are more accurate than any other measurements

except for the VLBI data taken from the Ulysses spacecraft [18]. The only other position measurement

with comparable accuracy is from observations of the satellites of Jupiter with the Very Large Array, which

determined the position of Jupiter with an accuracy of 125 nrad in right ascension and declination [19].

The Voyager 1 position determination will make a significant contribution to determining the ephemeris

of Jupiter prior to Galileo's encounter in December 1995.
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Rate Considerations in Deep Space Telemetry

M. Costa, M. Belongie, and F. Pollara
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The relationship between transmission rate and source and channel signal-to-

noise ratios (SNRs) is discussed for the transmission of a Gaussian source over a

binary input, additive Gaussian channel, with a mean-squared distortion criterion.

We point out that for any finite rate, and sut_ciently high channel SNR, the fidelity

criterion (reproduction SNR) is upper bounded by a function of the transmission
rate. Thus, the performance becomes rate limited rather than power limited. This

effect is not observed with the binary symmetric source, the binary-input Gaussian

channel combination, or the Gaussian source, unconstrained-input Gaussian channel

combination.

I. Introduction

The deep space communication channel uses binary phase shift keying (BPSK) modulation and is well
modeled as a binary input, additive white Gaussian noise (AWGN) channel model. It is usually accepted

that there is no bandwidth constraint in deep space communication application and that, for sufficiently

wide bandwidth usage, the full benefit of unconstrained bandwidth is essentially realized. While these
notions are correct, they must be viewed with caution. It does not necessarily follow that, for sufficiently

low overall transmission rate, there is little to be gained by further decreasing the rate. The interplay

between source and channel coding and the issue of coding complexity need to be considered. Depending

on the telemetry source and the available channel signal-to-noise ratio (SNR), there may be a significant

advantage in further decreasing the rate.

In this article, we review these notions in the context of a deep space communication system with

an independent identically distributed (i.i.d.) Gaussian source and a conventional BPSK, power-limited

channel, using mean-squared error (MSE) as a distortion criterion. While not an accurate model for

most deep space telemetry sources, the white Gaussian source is a useful reference model. Typical

telemetry data can be transformed by an (approximately) decorrelating orthogonal transformation, such
as the discrete cosine transform, producing data that can be approximated by parallel sources with white

(generalized) Gaussian distributions of different variances, one for each transform coefficient. Thus, the
combined source and channel coding of a white Gaussian source for transmission over the deep space

channel is a relevant exercise.

II. Preliminaries

The well-known equations governing transmission rate and source and channel SNRs were established

by Shannon in his seminal 1948 articles [1]. We refer to [2] as a source of notation. Figure 1 shows the

system under consideration.
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Fig. 1. Communication system model.

The capacity of a binary-input AWGN channel is given by

C(p_) = 1 - E_ [log2(1 + e-2U)] (1)

where Pv = 2gv/No, gv is the available energy per channel symbol, No/2 is the two-sided noise spectral

density, and E_ denotes expectation over u, a random variable with distribution N(pu, Pv).

The rate distortion function for an i.i.d. Gaussian source is given by

1 (1)= log (2)

where 5 is the normalized MSE distortion. The reproduction SNR (RSNR) is given by 1/5.

III. Discussion

There are three variables of interest in this communication problem. They are

(1) _, the normalized MSE distortion of reproduction at the receiver

(2) p=, the available channel SNR, given by P= = 2E=/No

(3) r, the overall transmission rate, measured in source samples per channel use

These quantities must satisfy the inequality

C(rpx) > rR(_) (3)

If the coding procedure is divided into a cascade of source and channel encoders, where the source is

first converted into a string of binary symbols, the rate r satisfies

10



rc Rz
-- -- (4)

r_ P,_

where r8 is the source code rate measured in bits per source sample, re is the channel code rate in

information bits per channel use, Rx is the source rate in samples per second, and Rv is the channel rate

in channel uses per second. Considering that each bandwidth unit (Hertz) corresponds, by the Nyquist

sampling theorem, to two dimensions (channel uses) per second, we relate the bandwidth B to Ry by

B = Rv/2.

Other channel SNRs of interest are Pb and py, the signal-to-noise ratios available per information bit

and per channel use, respectively. We have selected p= for our considerations because it is desirable to

compare transmission schemes that use the same power and time to transmit each source sample. These

three SNRs are related by rpz = rcPb = py.

Substituting Eqs. (1) and (2) in Eq. (3), we can obtain the fundamental bound on RSNR given r and

Px:

(5)

where the distribution of u is now expressed as N(rp=,rpx). This bound is depicted in Fig. 2, where we

present plots of RSNR versus $x/No for different values of overall rate r. (We use E=/No instead of p= in

all the figures for consistency with [2] and other articles.)

In the limit as r --* 0, Eq. (5) becomes

1 < ep_ (6)
6 -
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Fig. 2. Bounds on performance for s binary input channel with fixed r.
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Thus, as p= increases without bound, RSNR also may increase without bound. To increase p=, one

needs to alter the source transmission rate or the available power P. We have Px = P/Rz. Thus, P= can be

increased by reducing the source rate R_. This in turn affects the overall rate, since r = R_/Ry = Rx/2B.

Alternatively, Px can be increased with an increase in P.

The noted unbounded growth in RSNR only occurs in the limit as r _ 0. For any positive value of r,

the upper bound on RSNR approaches a finite limit as p= increases. This occurs when p_ is large enough

to make the channel essentially noiseless. Since the channel is restricted to binary input, its capacity is

upper bounded by 1-bit-per-channel use. Thus, the RSNR is upper bounded by a function of the overall

rate: 1/6 < 2 (2/r). Since this bound can be arbitrarily smaller than the bound that prevails in the limit

as r --* 0, Eq. (6), it is clear that the performance can greatly benefit from a decrease in overall rate (or

an increase in bandwidth when R= is held constant).

As shown in [3], the binary input AWGN channel has essentially the same performance as the un-

constrained power-limited AWGN channel for low enough overall rates (e.g., less than 0.3 bit/channel

use) when used to communicate a binary symmetric source. Interestingly, the same observation cannot

be made for the case of communicating a Gaussian random variable, except in the limit as r ---* 0. For

any positive value of r, which suggests a finite level of complexity, and sufficiently high p_, the binary

input channel will have its performance (RSNR) limited by rate rather than by power. This effect is not

observed in the unconstrained input AWGN case, where, for a fixed arbitrary rate, the upper bound on

RSNR grows to cc as p= --, _. Figure 3 compares, for various values of r, the unconstrained input and

binary input cases. (The dotted lines are asymptotes.)
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Fig. 3, Comparison of binary input channel and unconstrained channel for fixed r.

IV. Applicability

Under what circumstances might there be a lower bound on the overall rate r? This is a complicated

issue, but we can make a few observations. First, any real system must have some nonzero value of r.

Second, r clearly has some relationship to complexity, because r = rc/r_, and both lower-rate channel

12



codes and higher-rate source codes generally imply higher complexity. Thus, a constraint on r can be

seen as a constraint on overall complexity. However, we can also consider the two components, r8 and

re, separately. Fixing rs explicitly puts an upper bound on RSNR, resulting in the bounds shown in

Fig. 4. For this case, there is no difference between the unconstrained and binary input channels. Fixing

rc results in curves as shown in Fig. 5. Although a difference is seen between the unconstrained and

binary input channels, the curves all have the same exponential shape. So, the interesting phenomenon

described for fixed values of r (i.e., the different limiting behavior for binary input and unconstrained

channels) depends on a simultaneous bound on rs and rc by fixing their ratio.

To see what implications this phenomenon might have, we must consider for which combinations of r,

RSNR, and Px it occurs. For a fixed value of r, the intercept of the asymptotes, as illustrated in Fig. 3,

is approximately where the effect becomes significant. This intercept occurs at/f = 2 -2/_ and p= = 4/r.

So, for instance, if r = 1/4, the effect becomes significant for RSNR > 24 dB and p= > 9 dB. While these

SNRs are certainly within the range of interest, it is hard to imagine reasonable circumstances requiring

r > 1/4. For r = 1/16, which is known to be quite feasible for deep space communication, the effect

becomes significant for RSNR > 96 dB and p= > 15 dB. These SNRs are probably outside the range of

interest of most missions.
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Fig. 4. Bounds on performance for binary input channel or unconstrained channel with
rs limited.

V. Performance Bounds With Fixed Channel SNR

Complexity is not the only reason that r = 0 is impossible. For a fixed Px, r _ 0 implies py _ 0. Thus,

even if the computational complexity of a very low-rate channel code or very high-rate source code is not

a concern, the low SNR of the channel symbols might be. Although in theory py can be arbitrarily small

as long as C(py) > rR(_), in practice there is a lower bound on pu below which any given receiver cannot

perform symbol synchronization. Performance curves at constant py are shown in Fig. 6 for both the

unconstrained and binary input channels. Since the curves are all exponential, we see that the differing

13



behaviorbetweentheunconstrainedand binary input channels for fixed values of r is not due to a bound

on pv. It can also be seen from Fig. 6 that the performance difference between the unconstrained and

binary input channels is negligible for p_ < 0 dB.

40

35

3o

25

.o

z 20
u)
n-

15

10

UNCONS_

rc= 1/4

rc=112\
rc=3/4

rc= r= 0

BINARYINPUT

0 2 4 6 8 10

Ex/N 0, dB

Fig. 5. Bounds on performance for binary Input channel and unconstrained channel with
fixed rc.

40

35

30

25

2o

15

10

5

0
0 2 4 6 8 10

ExIN0'dB

Fig. 6, Bounds on performance for binary input channel and unconstrained
channel with fixed J,,,E'JNn.

14



References

[1] C. E. Shannon, "A Mathematical Theory of Communication," Bell System Tech-
nical Journal, vol. 27, pp. 379-423 and 623-656, 1948.

[2] S. J. Dolinar and F. Pollara, "The Theoretical Limits of Source and Channel

Coding," The Telecommunications and Data Acquisition Progress Report _2-102,

April-June 1990, Jet Propulsion Laboratory, Pasadena, California, pp. 62-72,

August 15, 1990.

[3] S. A. Butman and R. J. McEliece, "The Ultimate Limits of Binary Coding

for a Wideband Gaussian Channel," The Deep Space Network Progress Report

42-22, May-June 1974, Jet Propulsion Laboratory, Pasadena, California, pp. 78-

80, August 15, 1974.

15



N95-32224

TDA ProgressReport42-121 May15,1995
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Least-Mean-Square Adaptive Line Enhancers
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T. M Nguyen
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An efficient implementation of the forward-backward least-mean-square

(FBLMS) adaptive line enhancer is presented in this article. Without changing the
characteristics of the FBLMS adaptive line enhancer, the proposed implementation

technique reduces multiplications by 25 percent and additions by 12.5 percent in two

successive time samples in comparison with those operations of direct implemen-

tation in both prediction and weight control. The proposed FBLMS architecture

and algorithm can be applied to digital receivers for enhancing signal-to-noise ratio
to allow fast carrier acquisition and tracking in both stationary and nonstationary
environments.

I. Introduction

Adaptive line enhancers (ALEs) are useful in many areas, including time-domain spectral estimation

for fast carrier acquisition [2-4]. For example, a fast carrier acquisition technique [2],1 as shown in Fig. 1,

will be very useful for a deep-space mission, especially in a nonstationary environment or emergencies.

Figure 1 is the block diagram of an ALE in a digital receiver used for both acquisition and tracking. First,
the receiver is in the acquisition mode. Second, when the uplink carrier is acquired as indicated by the lock

detector, the switch is shifted to the tracking position and the tracking process takes over immediately.

With this acquisition scheme, the uplink carrier can be acquired by a transponder in seconds (as opposed

to minutes for the Cassini transponder). Although devised to support a space mission, the architecture of

the forward-backward least-mean-square (FBLMS) ALE and the associated algorithm proposed in this

article are also applicable to other systems, including fixed-ground and mobile communication systems.

Note that this proposed ALE scheme in the receiver needs a residual carrier, and does not work directly

in suppressed-carrier cases.

A conventional ALE system using a least-mean-square (LMS) algorithm is depicted in Fig. 2, where

z-1 represents a delay. The analysis of the ALE for enhancing the signal-to-noise ratio (SNR) to allow

fast acquisition is given in [2]. The block diagram of a FBLMS adaptive line enhancer is shown in Fig. 3.
The performance analysis of the FBLMS adaptive line enhancer is provided in [1]. The FBLMS adaptive

line enhancer algorithm enjoys approximately half the misadjustment of that of the LMS algorithm [1].

1T. M. Nguyen, H. G. Yeh, and L. V. Lam, "A New Carrier Frequency Acquisition Technique for Future Digital Transpon-
ders," to be published in a future issue of The Telecommunications and Data Acquisition Progress Report.
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Fig. 2. The architecture of the conventional ALE.

x (n)

ef (n)

Fig. 3. The structure of the FBLMS adaptive line enhancer.

However, it requires about twice the number of multiplications and additions of the LMS algorithm. In

this article, an efficient implementation of the fast FBLMS algorithm is presented. This fast algorithm

provides the same speed of convergence as that of the LMS algorithm and provides the same misadjustment

as that of the FBLMS adaptive line enhancer, but requires fewer multiplications and additions. The

computational reduction is achieved by grouping two successive predictor computations together and

computing weight adaption at every other sampling time [5]. By using a radix-2 structure to manipulate

time samples, redundant computations embedded in two successive time samples can be removed via a

new structure of the fast FBLMS algorithm.

This article is organized as follows. The FBLMS algorithm is reviewed in Section II. The fast FBLMS

algorithm is derived and proposed in Section III. The fast FBLMS algorithm implementation is given in

Section IV and simulation results are presented in Section V. Finally, the conclusion is given in Section VI.

II. Forward-Backward LMS Adaptive Line Enhancer Algorithm

The structure of the forward-backward LMS adaptive line enhancer [1} is shown in Fig. 3. The forward

and backward prediction errors are then defined, respectively, as follows:

18



e_(n) = x(n) - XT(n)W(_)

eb(n) = x(n -- N) - XT(n)W(n)

where the superscript T denotes the transpose of a vector, and

XT(n) = [x(n-- 1),x(n-- 2),-'.,x(n-- g)]

XT(n) = [x(n-- N+ 1),x(n- N + 2), ...,x(n)]

wT(_) = [Wl(n),w2(_), "", _N(-)]

In any gradient algorithm, the coefficient vector W(n) is updated using

W(n + 1) = w(n) - _9{e(_) _}

(la)

(lb)

(lc)

(ld)

(le)

(2a)

where # is the adaptive step size and the _){e(n) 2} is the estimated gradient of the surface of E{e(n)2}.

Note that E{.} denotes the expected value. In the forward-backward algorithm, e(n) 2 = e I (n) 2 + eb(n) 2,
and the gradient estimate is chosen as

_){e(n) 2} = -[ei(n)X(n) + eb(n)Xb(n)] (2b)

It is shown in [1] that Eq. (2b) is an unbiased estimator of the gradient. This leads to the coefficient
update

W(n + 1) = W(n) + #[ef(n)X(n) + eb(n)Xb(n)] (2c)

This means that W(n + 1) _ W(n) in steady state when both forward and backward errors are approach-
ing zero.

III. The Fast Forward-Backward LMS Algorithm

The fast FBLMS algorithm is derived in this section by using the radix-2 algorithm on time samples.
Both predictor and weight update sections are provided in detail.

A. Predictor Section

We consider the computation of two successive predictions in both forward and backward directions

with the fixed weight coefficient W(n - 1). After regrouping even and odd terms, the forward predictor
is obtained [5] and given in Eq. (3):

,,]: 1,] BT][W0]dr(n) [ xT(n) W(n--1)= C y AT . Wl .-1
(3a)

where
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A T = [x(n- 2),x(n- 4),-..,x(n- N + 2),x(n- N)]

B T -- [x(n- 3),x(n- 5), .-.,x(n- N + 1),x(n- N- 1)]

C T = [z(n- 1),x(n- 3), .-.,x(n- N + 3),x(n- Y + 1)]

W0 -- [w0(n - 1),w2(n- 1),...,wg-2(n-- 1)] T

Wl = [wl(n - 1),w3(n - 1),'--,wg-l(n -- 1)] T

Similarly, the backward predictor is obtained and given as follows:

L db(n) J L x (n) j

(3b)

(3c)

(3d)

(3e)

(3f)

where

oT]70]
H T Wl n-1

n

F T = [x(n - N),x(n - N + 2),-..,x(n - 4),x(n - 2)] (4b)

G T = [z(n- N + 1),x(n- Y + 3),...,z(n- 3),x(n- 1)] (4c)

H T = [x(n - N + 2),x(n - N + 4), ... ,x(n - 2),z(n)] (4d)

Equations (3a) and (4a) are approximations by virtue of updating the weight vector only once every two

cycles. The relationship between the two sequence sets {A, B, C} and {F, G, H} is given as follows:

F = A_ (5)

G = c_ (6)

z-lH = Ar (7)

where subscript r means the reversed order of the sequence and the z- 1 means one delay unit of the cor-

responding sequence and is equivalent to two time sample delays. Furthermore, we observe the following

relationships between G, B, C:

z-lG = B_ (8)

z-'C =B (9)

After performing the appropriate computation, Eq. (4a) can be rewritten as follows:
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db(n-1)] = [GT(Wo+Wl)+(F-G)TWo

db(n) J [GT(Wo+W:)-( G H)TwlJ

(lO)

The computation of Eq. (4a) requires two inner products of length N, while that of Eq. (10) requires

only three inner products of length N/2 and N/2 additions to perform Wo + Wl. Similarly, by combining

Eqs. (5) through (9), Eq. (3a) can be rewritten as follows:

-a_f(n-1)] = [AT(Wo+Wl)+(B-A)TW1 -

ds(n) 1 LAT(Wo + Wl) - (A C)TWo

[AT(W0 +Wl) + z-l(G - H)Tw1 -
/
L AT( W0 + Wl) - (F - G)Tw0

(11)

Clearly, the sequences (G - H) and (F - G) of Eq. (10) are reused again in Eq. (11), but in reverse order.
The computation of Eq. (11) requires only three inner products of length N/2. The total number of

multiplications and additions required in both forward and backward predictor sections for two successive

computations is about 3N and 3.5N, respectively. The total number of multiplications and additions

required in Eqs. (la) and (lb) for two successive prediction sections is 4N and 4(N - 1). Consequently,
there are about 25 percent and 12.5 percent savings in multiplications and additions, respectively.

[3. Weight Update Section

We consider the weight coefficient updates now. Since weights are explicitly computed at every other

time update using the look-ahead approach [6], the weight update of Eq. (2c) can be rewritten as follows:

W(n+l) =W(n--1)+#[ef(n--1)X(n--1)+eb(n--1)Xb(n--1)]+#[ef(n)X(n)+eb(n)Xb(n)]

= W(n - 1) + IX(n) ,el(n) ]
X(n - 1)] + [Xb(n)

k_es(n- 1)

#eb(n)
Xb(n -- 1)1 Lpeb(n _ 11]

(12)

By combining Eqs. (5) through (9), Eq. (12) is rewritten as follows:

Wo Wo [ #ef(n ) [ tteb(n)

[w0]= + # A(ef(n ) + ey(n -- 1)) + z-l(G H)rejf(n - 1)
Wl n-1

"G(eb(n) + eb(n -- 1)) + (F - G)eb(n - 1)]

+ # G(eb(n) + eb(n -- 1)) -- (G - n)eb(n) J

(13)
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The vectors (F - G) and (G - H) are once more employed in Eq. (13). Notice that the term/_[A(e/(n)
+ e.f(n - 1)) + G(eb(n) + eb(n -- 1))] is computed only once, and the sum is applied to both W0 and

Wl for updates. The total numbers of multiplications and additions in Eq. (13) are about 3N and 3.5N,

respectively. However, the total numbers of multiplications and additions of Eq. (2c) for two adaptations
are 4N and 4(N - 1). Consequently, 25 percent of multiplications and 12.5 percent of additions are saved

by using Eq. (13) in comparison with those operations of Eq. (2c).

IV. Implementation

The architecture of the fast FBLMS algorithm is depicted in Fig. 4. A switching circuit is employed

after the adaptive line enhancer, and the switch rate (from C to A or from A to C) is the same as

the sampling rate. The switching circuit is switched between points C and A alternately. Sequences

C and A are generated at a rate of 1/(2T) accordingly. The sequence B is a delayed version of the

sequence C. By using a radix-2 structure, sequences {B - A} and {A - C} are then generated at the

upper and lower lag, respectively. By using the sequence {B - A}, inner products (B - A)Twl and
z -1 (G -H)Twl are generated at the upper and lower lag, respectively, of the upper forward-backward

tapped-delay-line structure. Similarly, by using the sequence {A - C}, inner products (A - c)Tw0 and
(F-G)Tw0 are generated at the upper and lower lag, respectively, of the lower forward-backward tapped-

delay-line structure. Note that vectors F, G, and H are defined in Eqs. (5), (6), and (7), respectively.
Inner products of AT(w0 + Wl) and GT(w0 + Wl) are computed at the top and bottom portions,

respectively, of the fast FBLMS architecture. Finally, forward errors {e/(n) and eI(n- 1)} and backward
errors {eb(n -- 1) and eb(n -- 2)} are computed at the right-hand side of Fig. 4. In order to subtract the

term of z-l(G - H)Twl and form the backward error, a delay unit is applied to the output branch of

the inner product of GT(w0 + Wl). Consequently, the corresponding backward error is delayed from

eb(n) to eb(n -- 2). Notice that this radix-2 structure concept can be applied again to the upper and lower

forward-backward taped-delay-line portion of the fast FBLMS algorithm to further reduce the number
of multiplications and additions.

Although the fast FBLMS architecture shown in Fig. 4 appears more complex than the FBLMS

shown in Fig. 3, the structure is still very simple. In fact, the fast FBLMS architecture consists of

radix-2, forward LMS, and FBLMS structures. The increased data flow complexity over the FBLMS

algorithm is limited; therefore, the fast FBLMS algorithm can be easily implemented with digital signal

processors.

V. Simulation Results

An adaptive line enhancer with 6-weight (N = 6) is chosen as an example. The input signal is a sinusoid

of frequency f0 contaminated by white noise. Computer simulations are conducted for the misadjustment

calculation by using forward LMS, FBLMS, and fast FBLMS algorithms. The misadjustment [1] is
computed after convergence as follows:

where

i

extra output power due to weight jittering

minimum output power

E[A(n)T ¢(x, x)A(n)]

E[e(n)2]om
(14)
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= - wop, (15)

¢(x, x) = E[X(n)XT(n)] (16)

E[e(n)2]opt = E[x(n) 2] - WTtE[x(n)X(n)] (17)

Table 1 shows the measured misadjustments for various values of SNR at step size # = 2 -s. Apparently,

the excess error power for both the FBLMS and the fast FBLMS algorithms is approximately half that of

the forward LMS algorithm at the 10-dB SNR. The improvement of the misadjustment by using both the

FBLMS and the fast FBLMS algorithms over that of the forward LMS algorithm is limited at an SNR

around 0 dB. However, the misadjustment of the fast FBLMS algorithm is about the same as that of

the FBLMS algorithm. Furthermore, it is observed in Table 1 that, at a higher SNR, the misadjustment

increases (for a given step size # = 2-s). This is because the minimum output error power decreases

much more rapidly than the extra output power due to weight jittering, as depicted by Eq. (14). This

high misadjustment is significantly reduced when the step size # is cut to 2 -1°, as shown in Table 2.

Table 2 shows the measured misadjustments for various values of the step size and the frequency f0 at

SNR = 10 dB. Apparently, the excess error power for both the FBLMS and the fast FBLMS algorithms

is approximately half that of the forward LMS algorithm at the step size # = 2 -s and # = 2 -1°

The misadjustment is much reduced when the step size is small (2 -l°) by using any one of the three

algorithms. Again, the misadjustment of the fast FBLMS algorithm is about the same as that of the

FBLMS. The E[e(n)2]opt used to derive the misadjustment is computed by using 500 samples in each run.

The misadjustment results listed in Tables 1 and 2 were obtained by averaging 100 runs of the excess

error power curves after convergence had been achieved.

Table 1. A comparison between the misadJustment powers of
three algorithms at/_ = 2 -8.

SNR f0
Percent misadjust ment

Forward LMS FBLMS Fast FBLMS

0 0.1 3.04 2.75 2.75

3 0.1 3.74 2.84 2.93

10 0.1 32.50 13.77 16.95

Table 2. A comparison between the misadjustment powers of three
algorithms using fixed SNR = 10 dB with different/_.

Percent misadjust ment

Forward LMS FBLMS Fast FBLMS

2 -8 0.1667 31.34 14.47 16.03

2 -8 0.1 32.5 13.77 16.95

2 -1° 0.1667 3.06 2.05 1.99

2 -1° 0.1 2.33 1.24 1.30
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Figures 5(a), (b), and (c) show a typical excess error power versus n plot at f0 = 1/6, step size = 2 -s,

and SNR = 10 dB for the forward LMS, FBLMS, and fast FBLMS algorithms, respectively. Figure 5(d)

shows the excess error power at the steady state. It is clear that the performance of the fast FBLMS

algorithm is about the same as that of the FBLMS algorithm.

Vl. Conclusion

The fast forward-backward LMS algorithm presented in this article shows that the number of arith-

metic operations in [1] can be reduced without degrading performance. In the forward-backward predictor

section, 25 percent of multiplications and 12.5 percent of additions are saved in each of two successive

operations. Similarly, in the weight control section, 25 percent of multiplications and 12.5 percent of

additions are saved in each of two adaptations. Simulation results indicate that improvements in misad-

justment for both the FBLMS and the fast FBLMS algorithms over the conventional LMS algorithm are

about 50 percent at a high SNR. When the SNR is low, the misadjustment improvement for both the

FBLMS and the fast FBLMS algorithms over the conventional LMS algorithm is less than 50 percent.

Notice that this fast forward-backward LMS algorithm is well suited for implementation on application-

specific integrated circuits and digital signal processors. This implementation method can be generalized

by using higher than two steps of look-ahead. Further computational savings are possible with limited cost

on controlling appropriate data flow. This fast FBLMS adaptive line enhancer can be easily integrated

together with either a conventional voltage-controlled oscillator in a closed loop for acquisition/tracking,

as used in the present deep-space transponder, or a numerically controlled oscillator in an open-loop

scheme for acquiring and tracking the carrier signal, as will be used in future deep-space transponders.
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This article studies, by computer simulations, the performance of deep-space

telemetry signals that employ the pulse code modulation/phase modulation

(PCM/PM) technique, using nonreturn-to-zero data, under the separate and com-

bined effects of unbalanced data, data asymmetry, and a band-limited channel. The

study is based on measuring the symbol error rate performance and comparing the

results to the theoretical results presented in previous articles. Only the effects

of imperfect carrier tracking due to an imperfect data stream are considered. The

presence of an imperfect data stream (unbalanced and/or asymmetric) produces un-

desirable spectral components at the carrier frequency, creating an imperfect carrier

reference that will degrade the performance of the telemetry system. F_urther dis-

turbance to the carrier reference is caused by the intersymbol interference created

by the band-limited channel.

I. Introduction

There is considerable interest among international space agencies in searching for a bandwidth-efficient

modulation scheme that can be used for future space missions without major modifications to their ground

stations [1-4]. The Consultative Committee for Space Data Systems (CCSDS) has undertaken the task of

investigating a modulation scheme that offers both of these features (bandwidth efficiency and no major

hardware modifications to the current systems).

Currently, the space telemetry systems employ residual carrier modulation with subcarriers that are

used to separate the data from the RF residual carrier. This was necessary to avoid interference because

most of the data power fell within the bandwidth of the carrier phase-locked loop (PLL), as shown

in Fig. l(a). The CCSDS has recommended that square-wave and sine-wave subcarriers be used for

the deep-space and near-Earth missions, respectively [5]. This modulation scheme is called pulse code

modulation/phase-shift keying/phase modulation (PCM/PSK/PM), and it was developed at a time when

weak signals and low data rates dominated [6]. With the development of technology and the evolvement

of the Deep Space Network (DSN), a significant increase in the signal power can result in higher data

rates. Using subcarriers in this case causes the occupied bandwidth to increase significantly. This is

prohibitive because the space telemetry systems often operate under imposed bandwidth constraints. A

natural solution is to eliminate the subcarrier and modulate the nonreturn-to-zero (NRZ) data directly

on the RF carrier. This modulation scheme is referred to as PCM/PM/NRZ, and not only does it require
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minimum hardware modifications to the current systems, but it also achieves the bandwidth efficiency

[4,7]. In this modulation technique, the part of the data spectrum that falls within the narrow carrier
loop bandwidth seems flat and appears as white noise, as shown in Fig. l(b), and, since the ratio of loop
bandwidth to data rate is very small, the carrier tracking performance degradation due to this white

noise component is negligible.

Recently, Nguyen has investigated and analyzed the behavior of PCM/PM receivers in nonideal chan-

nels [1,2]. The imbalance between +l's and -l's and/or data asymmetry in the data stream produce
undesirable spectral components that degrade the performance of the system. Further degradation is

caused by the intersymbol interference (ISI) created by the band-limited channel. This article verifies,

by computer simulations, the theoretical results presented in [1,2] for the NRZ data stream. The Signal

Processing Worksystem (SPW) was used for implementing and simulating the system. The separate
effects of unbalanced data, data asymmetry, and band-limited channel on the symbol error rate (SER)

performance of PCM/PM/NRZ receivers were simulated and then compared to the theoretical results

presented in [1]. In reality, however, the receivers operate in the aggregate presence of these three effects,
and the symbol signal-to-noise ratio (SSNR) degradation due to the three effects is not the algebraic

sum of the SSNR degradation due to each separate effect. The second part of this article presents the
simulation results for the degradation due to the combined effects on the SER performance, and these

results are compared to the theoretical results presented in [2].

The organization of this article is as follows: Section II describes the separate effects on PCM/PM/NRZ

receivers of perfect, unbalanced, asymmetric, and band-limited data streams. Section III describes the
combined effects of these streams on PCM/PM/NRZ receivers. Section IV gives a brief description of

the PCM/PM receiver blocks that were used to build the system in the SPW, Section V discusses the
simulation results and compares them to theory, and, finally, Section VI presents the conclusion.

II. Separate Effects on PCM/PM/NRZ Receivers

The deep-space received telemetry signal, in the absence of a subcarrier, is given by [1]
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_,(t) = v'_ {cos (mr) cos(,_t + Oo)- a(t) sin(,,_r) sin(,_ot+ Co)}+ n(t) (1)

where P is the transmitted power, mT is the telemetry modulation index in rad, wc = 2rrfc is the angular

carrier center frequency in tad/s, 00 is the initial carrier phase, n(t) is an additive white Gaussian noise
(AWGN), and d(t) is the data stream (NRZ) defined as

oo

d(t) = _ dkp(t + kT_) (2)
k=-oo

where dk = ±1 with transition density Pt, p(t) is the baseband pulse, and T_ is the symbol period in

seconds. The first and second terms of Eq. (1) are the residual carrier and data components, respectively.

The undesired spectral components caused by the imperfect data stream (unbalanced data and/or

data asymmetry) can degrade the carrier tracking performance. If 0 denotes the carrier loop estimate

of 00, the phase error due to the thermal noise and interference caused by the imperfect data stream is
defined as

Oe = 0o - 0 = Oe(noise) + Oe(data) + Oe(spike) (3)

where Oe(noise), Oe(data), and Oe(spike) are the phase error caused by the noise, data interference, and

the spike caused by the imperfect data stream, respectively.

The carrier loop tracks the residual carrier component in Eq. (1) to provide an imperfect reference
given by

,-(t) = _ cos (_:_t+ #) (4)

The average probability of error due to the imperfect carrier tracking is given by

Re : f Pe(Oe)aOe) doe
Or:

(5)

where Pe(Oe) is the conditional probability of error, and P(Oe) is the probability density function (pdf) of

the carrier tracking phase error 0e. Assuming that this pdf has a Tikhonov distribution that is entirely
characterized by the mean (assumed 0) and variance a _ of Be, and when the loop signal-to-noise ratio

(SNR) is high, P(Se) may be approximated as Gaussian distribution, namely,

exp (-0_/(2o=))
P(Oe)_ [2rra2l_U2 ,-oc < Oe< oc (6)

As mentioned above, this expression was derived assuming the mean of the phase error Oe to be zero.

This assumption, however, is not true for an imperfect data stream, as will be shown in the subsequent
sections.

The expressions for Pe(Oe) and the carrier tracking phase error variance a 2 have been evaluated in [1,2]
for all the different cases studied in this article. The final results will be presented here for completeness.
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A. Perfect Data Stream

In a perfect purely random data stream, the probability of transmitting a +1 pulse (or probability of

mark), p, is equal to the probability of transmitting a -1, q, with transition density, pt, given by

1 (7)
Pt = 2pq = -_

where q = 1 -p.

The carrier term of Eq. (1) generates a residual carrier at fc with power, Pc, given by

Pc = P cos 2 (mr) (8)

Combining the carrier and data terms, the one-sided power spectrum of a PCM/PM/NRZ perfect data

stream is given by

s(y) = So(f) + So(f) (9)

where

and

Sc(f) =Pc6(f) (10)

SD(f) = P sin 2 (mr)Scont(f) (11)

is the data spectrum with power PD defined as

PD = P sin2 (roT) (12)

For a perfect NRZ data stream, Scont(f) is defined as the power spectral density PSD) for an ideal NRZ

data stream and is given by

/ sin2 (lrfTs) "_ (13)
Scon,(s)= n I J

Figure 2(a) shows the power spectrum of a perfect NRZ data stream (generated using SPW for symbol

rate R, = 1/T_ = 104 kbits/s).

For a perfect data stream and ideal channel, the conditional probability of error is given by

Pe(O_) = _ erfc cos (0e) (14)

where E,/No denotes the SSNR, that is,
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Fig. 2. Spectrums of different NRZ data streams: (a)
balanced data stream (p = 0.5), (b) unbalanced data
stream (p = 0.4), and (c) asymmetric data stream (_ = 14
percent).

E, PT, sin 2 (mT) PDT,

N00 = N0 No (15)

and erfc (x) is defined as the complementary error function given by

X

2/erfc (x) = 1 - erf (x) = 1 - _ exp (-v 2) dv
0

(16)

Note that for this case, the mean of the phase error 0e in the steady state is zero. This, however, is not

true for an imperfect data stream, as will be shown in the subsequent sections.

For the high data rate case (BL/Rs << 0.1, where BL denotes the one-sided loop bandwidth), the

variance of the carrier tracking phase error is given as [1]

a2 = 1 + BL
Po _ tan2 (mT) (17)
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where

(Es/No) (18)

Po = (BL/Rs) tan2(mT)

By substituting Eqs. (6) and (14) into Eq. (5) and performing the numerical integration, the curve for the

probability of error versus SSNR was obtained and is shown in Figs. 3 through 9 for comparison purposes.
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B. Unbalanced Data Stream

The imbalance between +l's and -l's in the data stream causes an additional corruption to the

received signal in Eq. (1), generating undesirable spectral components that can potentially degrade the

performance of the telemetry system. When p is not equal to 0.5 (and, therefore, Pt < 0.5), the data

component will be affected and Eq. (11) now becomes

SD(f) = Psin 2 (roT) {Sd_(f) + Scont(f)} (19)

where Sdc(f) is the dc (or harmonic) component caused by the imperfect data stream that falls on the

RF carrier.

The spectrum of an unbalanced NRZ data stream for p = 0.4, generated using the SPW, is shown in

Fig. 2(b). For a PCM/PM/NRZ unbalanced data stream, the dc and continuous PSD components are

found to be [1]
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Sac(f) = (1 - 2p)Z6(f)

f sin 2 (TrfT_) ]

Scont(f) = 4Tspq i'_( 7rfTs)2-

(20)

(215

with power given by

Pdc = (1 - 2p)2p sin2 (roT)

Pcont = 4pqP sin 2 (roT)

(22)

(23)

respectively, and where

I'D = Pa¢ + Pco,_t
(24)

Therefore, in addition to the tone generated at fc by the residual carrier component in Eq. (15 with power

given by Eq. (8), the spectrum of unbalanced PCM/PM/NRZ will include another tone at fc generated by
the imbalance between +l's and -l's with power given by Eq. (22). However, these two tones at fc have
noncoherent phases, causing the mean of the carrier tracking phase error in the steady state to deviate

away from zero. This deviation is defined as Oe(mean), which is a function of p and the modulation index

mT and is given by

Oe(mean) = _ tan -1 {(tan mT)(2P- 15} (25)

Note that when p = 0.5, then tan -1 0 = 0, independent of raT, as one would expect.

Figure 10 shows the Oe(mean) of balanced and unbalanced data streams as generated by an SPW for

00 = 0. Note that for the case of a balanced data stream, the mean of the phase error is centered at zero,
whereas for an unbalanced data stream, the mean is at a negative value which, using the above equation,

is calculated to be about -0.54 rad (-31 deg) for p = 0.6 and mT= 1.25.

The conditional probability of error Pe(O_) is the same as the one given by Eq. (14). Recall, however,

that Eq. (65 for the pdf of the carrier tracking phase error P(Oe) was derived assuming the mean of 0e to

be zero. Therefore, the simulations will have to compensate for the phase difference C00 - 05 (Eq. (3)) by

adding the value of Oe(mean) (Eq. (25)) to the phase of Eq. (4), (0), which results in a zero-mean phase

error. In that case, P(O_) is given by Eq. (6) with the tracking variance given by

1 I (26)Ol
a2= 1 + tan 2(roT)+

where P0 is defined as before, a is the interference due to the continuous spectrum, and I/C is the

interference caused by the dc component-to-carrier power ratio given, respectively, by

sin2 ( ITs)
(27)
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I

= (1 - 2p) 2 tan 2 (roT) (28)

where H(j2rcf) denotes the carrier loop transfer function, and for a second-order PLL is given by

iH(j27rf)l 2 _ 1 + 2 (f/f,,)
I + (f/A) (29)

where fn is the loop natural frequency.

The plot of the SER versus SSNR is shown in Figs. 3 and 4.

C. Data Asymmetry

Data asymmetry, due to rising and falling voltage transitions, causes undesirable spectral components

that degrade the performance of the space telemetry system. The data asymmetry model adopted in this

article assumes that +1 symbols are elongated by (ATs)/2 (relative to their nominal value of Ts seconds)

when a negative-going data transition occurs, and -1 symbols are shortened by the same amount when a

positive-going data transition occurs. Otherwise (when no transitions occur), the symbols maintain their

nominal T, seconds width. This model is illustrated in Fig. 11 for a purely random NRZ data stream.

37



1
(a)

-I_

I
I

(b) I

I
I
i
I
I

-I- I

I
-,q

!

2

l
I
I
I
I

Fig. 11. Perfect and asymmetric NRZ data
streams: (a) _ = 0 (perfect data stream) and (b) .

= 0 (asymmetric data stream).

The power spectrum of an asymmetric NRZ random data stream with equiprobable symbols (that is,

P = Pt = 0.5) and symbol rate Rs of 104 kbits/s is shown in Fig. 2(c). The dc, continuous, and harmonics

PSD components are given by [1,3]

Sdc(f)---- _2_(f) (30)

Ts [sin2(-ITs) 1
Soo._(f)= y l T_f-_)_)_ J

Ts[sin2(21rfTs_)][3cos2(TrfTs)+ cos2(2vrfTs_)]
[3+ 5 cos_(.fT._)]+ T L (_f--)-_)-J):J

(31)

1 oo 1

Sh(f) = _r2 m_=l SC(m,-_,_)6(f - mRs)
(32)

respectively, where _ denotes data asymmetry and is defined as

A (33)
2

and where

(1)C m, 2, _ =14 sin2(2m_r_)
(34)

Hence, the data spectrum can be written as
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SD(f) = Psin 2 (roT) {Sdc(f) + Scont(f) + Sh(f)} (35)

which, in addition to the tone at fc caused by the carrier component, generates a spike at fc due to
the dc component Sdc(f), and a spike at integer multiples of the symbol rate Rs due to the harmonics

component Sh(f). The continuous spectrum Scont(f) is plotted in Fig. 12 for various values of _. Note

that when _ = 0, the above equation reduces to the perfect NRZ random data case given by Eq. (11).

Similar to the unbalanced data case, the phase of the dc component at fc caused by asymmetry and
the phase of the carrier tone are noncoherent. The mean of the phase error Oe for a perfectly balanced
asymmetric data stream was derived to be

Oe(mean) = -tan-l {(tan mT) (_) } (36)

Note that when _ = 0, Oe(mean) = 0, as expected. Again, the simulations may have to compensate for
the phase difference (Eq. (3)) to make the mean of 9e zero at steady state.

Recall that in order to calculate the average probability of error, the conditional probability of error
Pe(9_) and the tracking variance a 2 must be determined. For the data asymmetry model used in this

article and for a purely random and equiprobable (perfectly balanced) NRZ data stream, the conditional
probability of error has the following form:

P.(0,)
= _ erfc cos (Oe) + _ erfc (1 - _) cos (Oe) + erfc (1 - 2_) cos (Oe)

(37)

and the variance of the tracking phase error a 2 is given by Eq. (26), where P0 is defined in Eq. (18) with

oo

c_ = f In(27rf)12S_ont(f) df
--00

(38)

and

I 1 2
= _ tan 2 (rnT) (39)

Figure 5 shows the curves for SER versus SSNR when data asymmetry is present.

D. Band-Limited Channel

An additional impairment that contributes to the degradation of the overall performance of the system

is the ISI caused by the band-limited channel. Band limiting causes interference between successive pulses
producing the ISI effect, which behaves like an additional random noise.

If p(t) denotes the pulse shape of the data, and h_(t) denotes the impulse response of the equivalent
low-pass filter of the RF band-pass filter with bandwidth B, then the received data can be expressed as
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d(t) = _ dkg(t + kT,) (40)

k=--oc

where dk = +1 with p = q = 0.5, and g(t) is given by

9(t) = p(t) * h'(t) (41)

where * denotes convolution.

The impulse response of an ideal channel h'(t) is given by the inverse Fourier transform of the transfer

function H'(f):

1 -B< f<B (42)H'(f)= 0 otherwise

resulting in

h'(t) = 2B sin
(2_Bt)

27rBt

For an ideal filter and a perfect data stream, g(t + kT) can be found to be [1]

(43)
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where

+Ts(k+lll}-Si{27rB(t+Ts(k-_ll} ] (44)

Si(x) = ff Sinu(U_______)du

0

(45)

Figure 13 shows a plot of g(t) versus the normalized time tiT s. Note that the shape of the output is

dependent on the time-bandwidth product BTs. For BT, >> 1, the degradation due to band limiting

becomes negligible. As BT_ approaches 1, the rise and fall times of the output are significant when
compared to the input, and the output signal is further spread in time.

To calculate the average probability of error, Pe(Oe) and a2 need to be determined. Calculating Pe(0e)

exactly is very difficult because one has to take into account all possible combinations of the digits

dk = +1, 1 < Ikl < oc. It is assumed that only a finite number of M pulses before and after do, do = 0,

are taken into account. That is, only the ISI effects of the M preceding and M subsequent bits are
considered on the bit under detection. For BT_ > 1, the value of 1 _< M < 2 is sufficient. The conditional

error probability may be determined using [1]

11 {Pe(Oe) -- 2 _2M E erfc 1 +

where the SSNR for this case is given by

cos (0e)}
(46)

and

T_

Es _ Psin 2 (mT) /ig(t)l = dt (47)No No
0

fl T'g(t)g(t + kT_) dt

Ak dO (4s)

T'lg(t)r_ dt

The variance of the carrier tracking phase error is given by Eq. (17). Therefore, for 1 < M < 2, the

average error probability can be obtained by substituting Eqs. (6) and (46) into Eq. (5) and performing
the numerical integration. The results are shown in Fig. 6.

III. Combined Effects on PCM/PM/NRZ Receivers

The practical PCM/PM/NRZ receivers operate in the presence of both an imperfect data stream and a

band-limited channel. This part of the article studies the combined effects of an unbalanced data stream,
data asymmetry, and ISI on the SER. The total SSNR degradation of the receivers due to these three
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undesirable effects is not the algebraic sum of the SSNR degradation due to each separate effect found

in Section II. Therefore, it is necessary to study the combined effects of these three sources on the error

probability performance.

For an unbalanced and asymmetric data stream, the dc, continuous, and harmonics-PSD components

are given by [2]

Sdc(f) - [2p - (1 - 2_Pt)12_(f) (49)

[sin 2 (rfTs) ] [sin 2 (TrfTs_)]Scont(f) = Ts [ "_f-_s)2 [al(Pt) +a2(p, Pt,_)] + T8 [ -(rf---_s)2 j [a3(Pt,_)]

[sin2 (rfTs)] (50)

+TsL _ j [a4(p,p.¢)-as(p, pt)]

Sh(f) = 2 p2 _ 5C( In,p,_)_(f - lnRs)

71"2 m=l

(51)

respectively, where

al(Pt) = pt(1 - pt)[1 q- 2(1 - Pt)] -- Pat (52)
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a2(p, Pt, () = {3p3 + pt(1 - Pt)[1 + 2(1 - 2p)] } cos2 (pfTs_)

a3(pt, _) = p,(1 + p_ - p,) cos2(_fT_) + d cos (2.fTs_)

a4(p,pt, _) = pt(1 - pt)(1 - 2p)[0.5 cos (27rfTs_) - p sin (27rfTs_)]

a5(p, Pt) = 0.5pt(1 - pt)(1 - 213)

C(m, p, _) = sin 2(m_)[cos _(._._)- (1 -2p): s_n2(._._)]

(53)

(54)

(55)

(56)

(57)

Note that when p = Pt = 1/2 and _ = 0, that is, a perfect data stream, Eqs. (49) through (51) all reduce
to the result for a perfect NRZ random data stream, Eq. (13).

Once again, the presence of the two noncoherent tones (the dc component due to the imperfect data

stream and the carrier tone), both at fc, causes the mean of the phase difference (00 - 0) to deviate away
from zero. The expression for the mean of this phase difference was derived to be

O_(mean) = - tan -1 {(tan mT)[(2p -- 1) + 2_p(1 -- p)]} (58)

Note that this equation reduces to Eq. (25) and Eq. (36) by setting _ = 0 and p = 0, respectively.

The same approach used in Section II will be used here to determine the average SER. Therefore,

the simulations will again have to compensate for the phase difference (00 - t_). The average probability
of error is given by Eq. (5), and therefore, the expressions for P_(Oc) and P(Oc) must be determined to

evaluate Pc. The conditional error probability in tile presence of an imperfect data stream and band-
limited channel is given by [2]

{ o } { o }Pe(Oc) =pPr Z(Ts) < _-e do = +1 +qPr Z(Ts) > _-e,do = -1 (59)

where the overbar denotes statistical averaging over the joint distribution of the double infinite data
sequence dk, and the test statistic Z(T_) is given by

z(r_): G ±1 + dklk(i)
k=-

cos (0_) + ,,(T_) (60)

where +1 corresponds to do = +1. It is assumed that the corrupting noise process n(Ts) is a zero-mean
Gaussian random variable with a variance NoTs�2. The parameter Ik(i) is defined as

Ak(i) = _°T"9(t)9i(t + kTs) dt
, i= 1,2,3,4

fo T" tg(t)l 2 dt

(61)
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whereg(t) is the output of the ideal filter for a perfect data stream given by Eq. (44), and g,(t) for

i = 1,2, 3, 4 is defined as [2]

ga(t + kTs)=-g3(t+ kTs)

(64)

(65)

The variance of the carrier tracking phase error a 2 can be obtained using Eq. (26) where

2Sc_ = In(27rf)[ cont(f) df

-- 00

(66)

and

I (67)
= [2p- (1 - 2_pt)12tan2(mT)

Again, a is the interference due to the continuous spectrum component, and I/C is the interference
caused by the dc component-to-carrier power ratio. The harmonic components caused by asymmetry do

not interfere with the carrier tracking because of the assumption that 2BL << Rs.

The average probability of error can be found by substituting Eqs. (6) and (59) into Eq. (5) and

performing the numerical integration. The results are shown in Figs. 7 through 9.

IV. Description of PCMIPM Receiver Blocks

Figure 14 shows the block diagram of a PCM/PM receiver. This receiver consists of the test signal

generator (TSG), the advanced receiver (ARX), and the error counter. The TSG, shown in Fig. 15,

generates the deep-space spacecraft signal at an intermediate frequency (IF). The TSG's random data
block controls the parameter p, and depending on this value, a balanced or unbalanced data stream is

generated. The data asymmetry block controls the parameter _, producing an asymmetric data stream.
The Appendix gives a brief description of this block. Setting p = 0.5 and _ = 0 will produce a perfect

purely random data stream. Setting p # 0.5, _ # 0, or the combination will result in an unbalanced data

stream, asymmetric data stream, or a data stream with the combined imperfections, respectively.
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INPUT PARAMETERS CARRIER PARAMETERS

SAMPLING RATE, f_ 5 x 105 Hz

CARRIER FREQUENCY, fc; 1 x 105 Hz

INITIAL CARRIER PHASE, 00: 0.0 deg

SYMBOL RATE, R_ 1 x 104 Hz

MODULATION INDEX, m7_ 71.62 deg
TOTAL POWER/NOISE RATIO, P/No: 47.455 dB-Hz

NUMERICALLY CONTROLLED

OSCILLATOR (NCO) FREQUENCY:

INITIAL NCO PHASE:

CARRIER UPDATE RATE:

ONE-SIDED LOOP BANDWIDTH, BL, CARRIER:

1 x 105 Hz

0.0 deg

5 x 105 Hz

5.0 Hz

TSG

d(0_

_ ! Sr (t)

NOISE
GENERATOR

x

HOLD

y

--O
CARRIER

PHASE _1(t)

ARX

SYMBOL

ERROR
COUNTER

d(t)

SYMBOL
CLOCK

©

I /(t-T) l
|

Fig. 14. PCM/PM/NRZ system block diagram as implemented in SPW.

SIGNAL
SINK

SAMPLING
FREQUENCY

SAMPLING
TIME

Other TSG parameters include the following (the values shown are the ones used in simulations):

500 X 103 Hz = sampling rate, fs

10 x 103 Hz = symbol rate, Rs

100 x 103 Hz = carrier frequency, fc

0 deg = initial carrier phase, 0o

71.62 deg = modulation index, mT (corresponding to 1.25 rad)

and the total power-to-noise ratio P/No is calculated using

P Es

No No
lOloglo(sin 2 roT) + 10 loglo R, (68)

where E_/No is the SSNR in dB.

The ARX, shown in Fig. 16, consists of the following blocks:
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TSG BLOCK PARAMETERS

SAMPLING RATE, fs:

CARRIER FREQUENCY, fc:

INITIAL CARRIER PHASE, Co:

SYMBOL RATE, Rs:

MODULATION INDEX, mT_

5 × 105 Hz

1 x 105 Hz

0.0 deg

1 x 104 Hz

71.62 deg

TOTAL POWER/NOISE RATIO, P/No: 47.455 dB-Hz
PROBABILITY OF ZERO, p: 0.5
NO. OF SAMPLES/SYMBOL 50.0

DATA ASYMMETRY, _,: 0.0

S'NI
SINE-COSINEI

GENERATOR I

COSJ

RANDOM I I BINARY

DATA x_--_x NuTEORIc

DATA
y x ASYMMETRY Y

d_

I

Fig. 15. Teat signal generator (TSG) block diagram.

(1) The carrier PLL block estimates the incoming carrier phase and frequency and mixes it

with the input signal.

(2) The phase imbalance block adds (or subtracts) a phase to its input according to the

value of the phase imbalance parameter. The input to this block in simulations is given

by Eq. (4); therefore, depending on the kind of imperfect data stream present, this

parameter is set to Oe(rnean), as given by Eqs. (25), (36), or (58), so that by adding this

phase to the incoming phase _, the output of the block will have a zero-mean phase error.

The phase imbalance parameter is set to zero when no phase compensation is required,

that is, when no unbalanced and/or asymmetric data streams are present.

(3) The Butterworth low-pass filter controls the presence of the band-limiting effect by set-

ting the filter bandwidth B to a value that depends on the product BTs. If no band

limiting is present, the filter bandwidth B is set to 100 kHz.

(4) The ideal clock generates the timing for the sum-dump-hold symbol block. The use of

an ideal clock to produce the timing instead of the digital data transition tracking loop

block was for the purpose of matching the assumption made in theory, and therefore,

eliminating the loss due to symbol synchronization.

(5) The sum-dump-hold block outputs the soft symbols.

Finally, the error counter block compares the soft symbols of the ARX to the transmitted symbols and

outputs the number of errors N.
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CARRIER PARAMETERS INPUT PARAMETERS

NUMERICALLY CONTROLLED

OSCILLATOR (NCO) FREQUENCY:
INITIAL NCO PHASE:

CARRIER UPDATE RATE:

ONE-SIDED LOOP BANDWIDTH, BL, CARRIER:

v

_ CARRIER I

PLL SIN_.o SIN i

I
COSi _'

SIN I_--ID_ I

Sr (t)

1 x 105 Hz
0.0 deg

5 x 10 5 Hz

5.0 Hz

SAMPLING RATE, fs: 5 x 105 Hz

CARRIER FREQUENCY, fc: 1 x 105 Hz

INITIAL CARRIER PHASE, 00: 0.0 deg

SYMBOL RATE, Rs: 1 x 104 Hz

MODULATION INDEX, roT: 71.62 deg

TOTAL POWER/NOISE RATIO, P/No: 47.455 dB-Hz

PHA.qI: J CLOCK START TIME (0-INTERVAL -1 ) 8
M_A'I"A-_J-r.l= FILTER ORDER 3

.............. I ATTENUATION AT PASSBAND EDGE 3.0 Hz

REAL REAL_"_----= PASSBAND EDGE FREQUENCY 3 x 104 Hz
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' _ I BUTTERWORTH I
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CLOCK / _ CLOCK
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Fig. 16. Advanced receiver block diagram.

V. Discussion and Simulation Results

By substituting the expressions for the conditional probability of error Pe(Oe) and the probability

density function for the phase error P(8e) into Eq. (5), the SER as a function of SSNR was plotted in

[1,2] for each of the cases discussed above. Using typical operating conditions of mT = 1.25 rad and

2BL/Rs = 0.001, these theoretical plots are shown in Figs. 3 through 9 as the continuous curves. The

computer simulation results are shown as the triangular, circular, and square points for variables shown

therein.

Using the SPW, simulations were performed at 7-, 8-, 9- and 10-dB SSNR (Es/No), and the corre-

sponding P/No was calculated. The result of each simulation was the number of errors N (produced by

the error counter as a result of comparing the soft symbols to the transmitted ones). The average error

probability P_ was then calculated using

N
p_ = (69)

number of iterations/(fs/Rs)

where f_ is the sampling frequency in Hz and the fraction (fs/R_) is the number of samples per symbol.

The number of iterations must be chosen large enough so that the simulation results have sufficient

statistics. That is,

,00number of iterations =
(70)
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where SER is the symbol error rate as given by the theory. Finally, Pe was plotted versus SSNR and the

results were compared to the theoretical curves presented in [1,2].

A. Unbalanced Data

To verify the performance of the receiver in the presence of an unbalanced data stream, simulations

were performed for p = 0.5, 0.45, and 0.4.

As mentioned in Section II.B, when p _ 0.5, the phase of the tone caused by the unbalanced data is

noncoherent with the carrier phase, which results in a nonzero-mean phase error 0e. In order to overcome

this problem, the phase error was calculated using Eq. (25), checked by simulations, and then modified

so that the resultant phase error is of zero mean.

Figure 3 shows the theoretical and simulation results when no phase modification is made to the phase

error. When p _ 0.5, the simulations are in disagreement with theory, and the SSNR degradation in some

cases exceeds 1 dB. On the other hand, when the phase error is modified, the theoretical and simulation

results are in good agreement. These results are presented in Table 1 and Fig. 4. It is obvious that as

p deviates from 0.5, the performance of PCM/PM/NRZ degrades significantly, and that the degradation

becomes unacceptable when p < 0.45. This is due to the presence of a strong dc component caused by

the unbalanced data stream at the carrier frequency. The higher the deviation from 0.5, the stronger the

dc component, and as a result, the worse the degradation.

Table 1. Simulation data and results for unbalanced data, separate effects, a

No. of
Probability Es/No, P/No, No. of

of mark dB dB iterations P_ Pe theoryerrors
in millions

0.5 7 47.455 6 105 8.75 x 10 -4 7.727 x 10 -4

0.5 8 48.455 28.2 126 2.23 × 10 -4 1.909 × 10 -4

0.5 9 49.455 150 116 3.87 x 10 -5 3.363 x 10 -5

0.5 10 50.455 1300 132 5.08 x 10 -6 3.872 x 10 -6

0.45 7 47.455 6.01 115 9.57 x 10 -4 1.100 x 10 -3

0.45 8 48.455 25.2 129 2.56 x 10 -4 3.100 x 10 -4

0.45 9 49.455 80.2 112 6.98 x 10 -5 6.600 x 10 -5

0.45 10 50.455 500.2 134 1.34 x 10 -5 1.100 x 10 -5

0.4 7 47.455 7 764 5.79 x 10 -3 5.400 × 10 -a

0.4 8 48.455 10.0 704 3.52 x 10 -3 3.250 x 10 -3

0.4 9 49.455 15 612 2.04 x 10 -3 2.000 x 10 -3

0.4 10 50.455 25 686 1.37 x 10 -3 1.500 × 10 -3

am = 1.25 tad, Rs = 1 × 104 Hz, fs = 5 x 105 Hz, BL = 5 Hz, 2BL/Rn = 0.001.

B. Data Asymmetry

Since the power of the dc component generated by the asymmetric data at fc is much less than the

power of the carrier tone, the mean of the phase error will be small. The mean was calculated (Eq. (36))
and measured to be between -1.7 and -5.2 deg for _ between 2 and 6 percent, respectively, which are the

minimum and maximum values for _ used in the simulations. The degradation due to this nonzero-mean

phase error is negligible and, hence, no compensation was done to the phase error. Simulations were

performed for _ = 2, 4, and 6 percent. The results are shown in Table 2 and Fig. 5. Again the simulation

results are in good agreement with the theoretical results (within 0.2 dB). The numerical results show
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that, for data asymmetry less than or equal to 2 percent, the SSNR degradation is on the order of 0.1 dB

or less, and that this degradation is between 0.2 dB and 0.25 dB for data asymmetry of 6 percent and

for 10 -7 _< SER _< 10 -5.

Table 2. Simulation data and results for data asymmetry, separate effects, a

Data No. of
Es/No, Pt/No, iterations No. of

asymmetry, dB dB errors
percent in millions

Pe Pe theory

2 7 47.455 6.6 124 9.39 × 10 -4 8.75 X 10 -4

2 8 48.455 23 119 2.59 X 10 -4 2.20 X 10 -4

2 9 49.455 130 139 5.35 X 10 -5 3.85 X 10 -5

2 10 50.455 2100 203 4.83 × 10 -6 4.80 × 10 -6

4 7 47.455 6.6 144 1.09 x 10 -3 9.60 × 10 -4

4 8 48.455 20 137 3.43 × 10 -4 2.60 x 10 -4

4 9 49.455 115 136 5.91 x 10 -s 4.40 x 10 -5

4 10 50.455 1900 253 6.66 x 10 -6 5.50 x 10 -6

6 7 47.455 6.6 146 1.11 X 10 -3 1.30 x 10 -3

6 8 48.455 18 125 3.47 × 10 -4 2.85 × 10 -4

6 9 49.455 108 132 6.11 x 10 -s 4.70 × 10 -5

6 10 50.455 800 138 8.63 × 10 -6 6.30 × 10 -6

ap = 0.5, rn = 1.25 rad, R_ = 1 x 104 Hz, fs = 5 x 105 Hz, BL = 5 Hz,

2BL/Rs = 0.001.

C. Band-Limited Channel

In order to test the effect of the band-limited channel on the overall performance of the system,

simulations were performed for different values of the time-bandwidth product BTs = 1, 2, and 3. As

expected, the higher the value of the product BTs, the better the performance of the system. The

simulation results are shown in Table 3 and Fig. 6. The numerical results show that for 10 -7 _< SER _<

10 -5, the SSNR degradation is in the range of 1 to 1.2 dB for BTs = 1, and less than 0.3 for BT_ = 2.

The theoretical and simulation results are in good agreement. However, the simulations are a little worse

than the theoretical results. This is because the theoretical results were obtained for the case when the

ISI is caused by two adjacent pulses, that is, two pulses before and two pulses after the current pulse is

considered in the SER calculation.

D. Combined Effects

To test the behavior of PCM/PM/NRZ receivers in the presence of the combination of the three

undesirable effects, simulations were performed for different values of p, _, and BT_. One of the parameters

was varied as the other two remained constant. Since data imbalance and asymmetry were always present,

all simulations required compensation for the phase error Oe(mean) (Eq. (58)) so that the result is a zero-

mean phase error.

Figure 7 plots the SER as a function of SSNR for a fixed data asymmetry _ of 2 percent and BTs = 3

with p, probability of mark, as a parameter. The simulation results are also shown in Table 4, and are in

good agreement with the theory. The results indicate that, for mT = 1.25 rad and 2BL/Rs = 0.001, the

SER degrades seriously as p deviates from 0.45.
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Table 3. Simulation data and results for a band-limited channel,

separate effects, a

B_

No. of

E,/No, P/No, iterations No. of p, Pe theory
dB dB errors

in millions

I 7 47.455 6 226 1.88 x 10 -3 1.80 x 10 -3

1 8 48.455 Ii 141 6.41 x 10 -4 5.80 x 10 -4

I 9 49.455 30 94 1.57 x 10 -4 1.70 x 10 -4

1 10 50.455 160 88 2.75 x 10 -s 3.30 x 10 -s

2 7 47.455 6 150 1.25 x 10 -3 9.20 x 10 -4

2 8 48.455 21 146 3.48 x 10 -4 2.50 x 10 -4

2 9 49.455 105 143 6.81 x 10 -s 4.83 x 10 -s

2 10 50.455 800 137 8.56 x 10 -6 6.50 × 10 -6

3 7 47.455 6 125 1.04 × 10 -3 8.60 × 10 -4

3 8 48.455 22.6 131 2.90 × 10 -4 2.30 × 10 -4

3 9 49.455 114 126 5.53 x 10 -s 4.40 x 10 -5

3 10 50.455 800 124 7.75 × 10 -6 5.60 x 10 -6

am = 1.25 rad, probability of mark = 0.5, Rs = 1 x 104 Hz, fs = 5 x 105 Hz,

BL = 5 Hz, 2BL/Rs = 0.001.

Table 4. Simulation data and results for various probabilities of mark,

combined effects, a

No. of

Probability Es/No, P/No, iterations No. of p, Pe theory

of mark dB dB in millions errors (approximate)

0.45 7 47.455 7.2 149 1.03 x 10 -3 7.80 x 10 -4

0.45 8 48.455 25.2 137 2.72 x 10 -4 2.00 x 10 -4

0.45 9 49.455 80.2 78 4.86 x 10 -5 3.60 x 10 -5

0.45 10 50.455 500.2 57 5.70 x 10 -6 5.40 x 10 -_

0.4 7 47.455 7.2 467 3.24 x 10 -3 2.20 × 10 -3

0.4 8 48.455 25.2 711 1.41 × 10 -3 1.25 x 10 -3

0.4 9 49.455 80.2 983 6.13 x 10 -4 6.50 x 10 -4

0.4 10 50.455 500.2 4.23 x 103 4.23 x 10 -4 3.85 x 10 -4

0.35 7 47.455 7.2 2.80 x 103 1.94 × 10 -2 1.50 x 10 -2

0.35 8 48.455 25.2 6.41 × 103 1.27 x 10 -2 1.25 × 10 -2

0.35 9 49.455 80.2 1.89 x 104 1.18 x 10 -2 1.00 x 10 -2

0.35 10 50.455 500.2 8.72 x 104 8.72 x 10 -3 9.00 x 10 -3

aData asymmetry = 2 percent, BT8 = 3, m = 1.25 rad, Rs = 1 x 104 Hz,

./s = 5 x 105 Hz, BL = 5 Hz, 2BL/Rs = 0.001.
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Table 5 shows the simulation results obtained for various values of data asymmetry _ with BTs = 3

and p = 0.45. As shown in Fig. 8, the simulations are in good agreement with the theory. It is also

obvious that PCM/PM/NRZ is not sensitive to data asymmetry since the SSNR degradation is between

0.1 and 0.5 dB when _ varies between 2 and 6 percent and the SER is between 10 -4 and 10 -7.

Table 5. Simulation data and results for various values of data
asymmetry, combined effects, a

No. of No. of Pe theory
Data Es/No, P/No, iterations Pe (approximate)asymmetry, dB dB errors

percent in millions

2 7 47.455 7.2 149 1.03 × 10 -3 7.80 X 10 -4

2 8 48.455 25.2 137 2.72 × 10 -4 2.00 X 10 -4

2 9 49.455 80.2 78 4.86 x 10 -5 3.60 x 10 -5

2 I0 50.455 500.2 57 5.70× 10-6 5.40× 10-6

4 7 47.455 7.2 160 l.ll× 10 -3 9.70 X 10 -4

4 8 48.455 25.2 155 3.08 x 10 -4 2.70 x 10 -4

4 9 49.455 80.2 95 5.92 x 10 -5 4.80 x 10 -5

4 10 50.455 500.2 78 7.80 x 10 -6 6.50 x 10 -6

6 7 47.455 7.2 168 1.17 × 10 -3 1.10 × 10 -3

6 8 48.455 25.2 168 3.33 × 10 -4 2.95 × 10 -4

6 9 49.455 80.2 98 6.11 x 10 -5 5.50 x 10 -5

6 10 50.455 500.2 82 8.20 × 10 -6 7.75 x 10 -s

aProbability of mark = 0.45, BT8 = 3, m = 1.25 rad, Rs = 1 x 104 Hz,

fs = 5 X 105 Hz, B L ----- 5 Hz, 2BL/R8 = 0.001.

Table 6 and Fig. 9 illustrate the SER performance in the presence of a band-limiting channel for

p = 0.45 and _ = 2 percent with BTs as a parameter. As shown, the simulations are in good agreement

with the theory, and for BTs = 3, the SSNR degradation is on the order of 0.4 dB or less when the SER

is between 10 -4 and 10 -7 .

The numerical results prove that the total SSNR degradation due to the three undesirable effects is

not the algebraic sum of the SSNR degradation due to each separate effect. As an example, when the

SER is 10 -5, the SSNR degradation when p = 0.45, _ = 2 percent, and BTs = 3 (Fig. 7) is about 0.1 dB,

whereas, the algebraic sum of the SSNR degradations due to each separate effect (Figs. 4 through 6) is

about 0.6 dB.

VI. Conclusion

This article studied, by computer simulations, the separate and combined effects of unbalanced data,

data asymmetry, and a band-limited channel on the performance of a PCM/PM/NRZ receiver. All the

simulation results were in good agreement with the theoretical results presented in [1,2]. Hence, the

mathematical models presented in [1,2] can be used to predict the performance of the PCM/PM/NRZ

receivers. PCM/PM/NRZ was shown to be most sensitive to the imbalance between +l's and -l's in

the data stream, as the performance degradation became unacceptable when p < 0.45, and least sensitive

to data asymmetry. For BTs = 3, the SER performance was shown to be acceptable for both near-Earth

and deep-space missions.
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Table 6. Simulation data and results for various values of BTs,
combined effects, a

No. of
BT_ Es/No, P/No, iterations No. of Pe Pe theory

dB dB in millions errors (approximate)

3 7 47.455 7.2 149 1.03 × 10 -3 7.80 × 10 -4

3 8 48.455 25.2 137 2.72 × 10 -4 2.00 X 10 -4

3 9 49.455 80.2 78 4.86 X 10 -5 3.60 X 10 -5

3 I0 50.455 500.2 57 5.70 x 10 -6 5.40 x 10 -6

2 7 47.455 7.2 168 1.17 x 10 -3 8.50 x 10 -4

2 8 48.455 25.2 158 3.13 X 10 -4 2.20 X 10 -4

2 9 49.455 80.2 92 5.74 x 10 -5 3.90 × 10 -5

2 10 50.455 500.2 70 7.00 × 10 -6 6.60 x 10 -6

1 7 47.455 7.2 222 1.54 x 10 -3 1.25 x 10 -3

1 8 48.455 25.2 244 4.84 x 10 -4 3.75 x 10 -4

1 9 49.455 80.2 177 1.10 x 10 -4 1.20 × 10 -a

1 10 50.455 500.2 207 2.07 x 10 -5 2.60 x 10 -5

a Probability of mark = 0.45, data asymmetry : 2 percent, rn = 1.25 rad, R_ =
1 x 104 Hz, fs = 5 x 106 Hz, HL = 5 Hz, 2BL/Rs : 0.001.

Another modulation scheme that is of interest to CCSDS is PCM/PM/Bi-¢, which is also known

to be one of the most efficient modulation schemes in terms of bandwidth occupancy as compared

to PCM/PSK/PM [4]. Mathematical models have been developed to predict the performance of

PCM/PM/Bi-¢ receivers [1,2], and these models are currently being verified by members of CCSDS

and the results will be reported later.
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Appendix

Data Asymmetry Block

The data asymmetry block outputs NRZ asymmetric data stream y when the input x is a purely

random NRZ data stream. This block was implemented in SPW using mostly delays, switches, and

decision blocks. It first detects the transition that occurs at the end of every symbol using

dk - dk- 1
trans - (A-l)

2

where dk is the present symbol value and dk-1 is the previous symbol value, and therefore, this yields

a -1 when a +1 to -1 transition occurs, a +1 when a -1 to +1 transition occurs, and a 0 when no
transition occurs. The block then determines a threshold value T1, which is 0 if trans = +1 or 0, and

if trans = -1, where _ denotes data asymmetry. If there are N samples per symbol for the input x, P
denotes the past sample value, C the current, and i the ith sample in the symbol, then, for i = 0, i < N;

if i < T1, then y = P; otherwise, if T1 < i < N, then y = C.

53



N95- 32226

TDA ProgressReport 42-121 May15,1995

The Application of Noncoherent Doppler Data

Types for Deep Space Navigation
S. Bhaskaran

NavigationSystemsSection

Recent improvements in computationM capabifity and DSN technology have re-
newed interest in examining the possibility of using one-way Doppler data alone

to navigate interplanetary spacecraft. The one-way data can be formulated as the
standard differenced-count Doppler or as phase measurements, and the data can be

received at a single station or differenced if obtained simultaneously at two stations.
A covarianee analysis, which analyzes the accuracy obtainable by combinations of

one-way Doppler data, is performed and compared with similar results using stan-
dard two-way Doppler and range. The sample interplanetary trajectory used was

that of the Mars Pathfinder mission to Mars. It is shown that differenced one-way

data are capable of determining the angular position of the spacecraft to fairly high

accuracy, but have relatively poor sensitivity to the range. When combined with

single-station data, the position dispersions are roughly an order of magnitude larger

in range and comparable in angular position as compared to dispersions obtained

with standard two-way data types. It was also found that the phase formulation is

less sensitive to data weight variations and data coverage than the differenced-count

Doppler formulation.

I. Introduction

With increasing emphasis on controlling the costs of deep space missions, several options are being

examined that decrease the costs of the spacecraft itself. One such option is to fly spacecraft in a non-

coherent mode; that is, the spacecraft does not carry a transponder capable of coherently returning a

carrier signal. Historically, one-way Doppler data have not been used as the sole data type due to the

instability of spaceborne oscillators, the use of S-band (2.3-GHz) frequencies, and the corresponding error

sources that could not be adequately modeled. However, with the advent of high-speed workstations and

more sophisticated modeling ability, the possibility of using one-way Doppler is being reexamined. This

article assesses the navigation performance of various one-way Doppler data types for use in interplan-

etary missions. As a representative interplanetary mission, the Mars Pathfinder spacecraft model and

trajectory were used to perform the analysis. Comparisons are given between results employing Doppler
data formulated as standard differenced-count Doppler (which yields a frequency measurement) as well

as accumulated carrier phase (which yields a distance measurement, usually given in terms of cycles).

Combinations of one-way data obtained simultaneously at two different stations and then differenced (to

produce an angular type measurement) and single-station one-way data are shown to produce results that

may satisfy future mission requirements.
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II. Spacecraft Trajectory

In order to perform the analysis, a representative interplanetary trajectory was needed. The one used

in this study is the Mars Pathfinder cruise from Earth to Mars. The spacecraft is injected into its trans-

Mars trajectory on January 3, 1997, and reaches Mars on July 4, 1997. A schematic of this trajectory

is shown in Fig. 1.1 In between, there are four trajectory correction maneuvers (TCMs) (on February 2,

March 3, May 5, and June 24), with mean magnitudes of 22.1, 1.4, 0.2, and 0.1 m/s, respectively. The first

two are to remove an injection targeting bias that the initial interplanetary trajectory contains in order

to satisfy planetary quarantine requirements. The final two are used to precisely target the spacecraft

for its final approach and entry into the Martian atmosphere. Since Pathfinder goes directly from its

interplanetary trajectory to atmospheric entry, the aim point of the targeting maneuvers is chosen such

that the entry flight path angle is between 14.5 and 16.5 deg. 2 This corresponds to an entry corridor in the

B-plane about 50-km wide in the cross-track direction. The down-track and normal direction constraints

are chosen to ensure that the spacecraft reaches the landing site with a 99-percent probability of being

within a 200-km down-track by 100-km cross-track ellipse. 3

MARSATLAUNCH

TCM-1 \ EARTH AT LAUNCH
_k (12/05/96)

TCM-3

MARS AT ARRIVAL
(07/04/97)

TCM-4 EARTH AT
ARRIVAL

Fig. 1. Mars Pathfinder trajectory.

III. Doppler Measurement Model

When operating in one-way mode, the DSN measures the Doppler frequency of the carrier signal

received from a spacecraft by comparing it with a reference frequency generated by a local oscillator.

The two signals are differenced, and a counter measures the accumulated phase of the resultant signal

1 Provided by P. H. Kallemeyn, Mars Pathfinder Navigation, Jet Propulsion Laboratory, Pasadena, California, January
1995.

2p. H. Kallemeyn, Mars Pathfinder Navigation Plan, JPL D-11349 (internal document), Jet Propulsion Laboratory,
Pasadena, California, July 1994.

3 Ibid.
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over set periods of time, called the count time. The total phase change over the count time, divided by

the count time, produces a measure of the Doppler shift of the incoming signal, with which the range

rate of the spacecraft can be inferred. This is referred to as differenced-count Doppler, the standard
measurement used for all deep space missions thus far. If, instead, the original phase data themselves

are used, a measure of the change in the range of the spacecraft over the length of the pass is obtained,
with the initial range at the start of the pass being an unknown. Although in principle this is a fairly

powerful data type, it has not been used in the past due to operational problems associated with cycle

slips, whereby the receiver momentarily loses lock with the incoming signal. Advances in technology over

the years, however, have made cycle slips less frequent and, thus, there is renewed interest in examining

the possibility of using the phase measurement directly as a data type.

The four data types investigated in this study were one-way Doppler, one-way differenced Doppler,

one-way phase, and one-way differenced phase. In order to obtain a qualitative understanding of what
information is available with these data, some simple equations will be presented. Neglecting error

sources and relativistic effects for the moment, one-way Doppler data are approximately proportional to

the topocentric range rate of a spacecraft:

f (1)
C

where

f = the observed Doppler shift of the carrier signal

fT = the carrier frequency transmitted by the spacecraft

= the station-spacecraft range rate

c = the speed of light

Hamilton and Melbourne [1] derived a simple approximation for the topocentric range rate seen at a

tracking station in terms of the cylindrical coordinates of the station and the geocentric range rate, right

ascension, and declination of the spacecraft:

/_ _ ÷ + oJr, cos 6 sin(wt + c_ + )_ - a) (2)

where

= the geocentric range rate of the spacecraft

a, _ = the geocentric right ascension and declination of the spacecraft

w = the rotation rate of the Earth

a_ = the right ascension of the Sun

r_,,k_ = the spin radius and longitude of the station

Thus, the signal seen at the station represents the sum of the geocentric velocity of the spacecraft and
short term sinusoidal variations due to the rotation of the Earth. The amplitude of the sinusoidal variation

is proportional to the cosine of the declination of the spacecraft, and its phase includes information about

the right ascension. Now, if the signals received simultaneously at two stations are differenced, the

geocentric range rate drops out of the equation and only the periodic variations are left. This implies
that differenced Doppler data are incapable of directly measuring the range of the spacecraft, but can
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betterresolveits angularpositionthanthe undifferenceddata. In addition,thedifferenceddataare
nearlyinsensitiveto short-termvariationsin thevelocity,suchasthosedueto shortthrusterfirings.

If Eq.(1) isnowintegratedoverthe intervalfromto to t, the following expression for the Doppler

phase is obtained:

Ct - Ct,, _ fT Pt -- Pro (3)
C

where

p = the topocentric range of the spacecraft at times t and to

¢ = the measured phase of the carrier signal at times t and to

Thus, the phase of the received carrier signal at a given time measures the change in range from the

previous time. At the beginning of the pass, there will be an unknown bias representing the initial range

to the spacecraft. An analytical approximation for the difference of two range measurements received

simultaneously at two stations can be written in terms of the baseline vector between them as [2]

Ap _ rB cos 6 COS(_B -- O_)+ ZB sin 6 (4)

where

rB = the baseline component normal to the Earth's spin axis

zB = the baseline component parallel to the Earth's spin axis

aB = the baseline right ascension

a = the spacecraft right ascension

_i = the spacecraft declination

Once again, it can be seen that differencing the data removes direct information about the radial distance
to the spacecraft and the result is given in terms of its angular position.

All data used in this analysis were assumed to be obtained at X-band frequencies (7.2-8.4 GHz). The

differenced data types were taken when the spacecraft was visible simultaneously from two DSN stations

above an elevation cutoff of 15 deg. This resulted in overlaps of roughly 4 hours in length occurring over
the Goldstone-Madrid and Goldstone-Canberra baselines throughout the data arc. No data over the

Canberra-Madrid baseline could be obtained.

Data scheduling was set as follows: Single-station one-way data were taken during every other

pass at all three DSN sites, starting at the beginning of the Mars Pathfinder trajectory (January 3,

1997) and ending at the data cutoff on June 19, 1997. This results in roughly 14,000 points (at

10-min intervals). Two-station differenced data were scheduled at every overlap until the data cutoff

date, resulting in approximately 6000 points. The assumed noise levels used were 0.1 and 1.0 cycle for

phase data and 0.05 and 0.5 mm/s for the Doppler data.

IV. Orbit Determination Error Analysis

Orbit determination is composed of several steps: generation of a reference trajectory, computation of

observational partial derivatives with respect to the reference trajectory, and correction of the trajectory
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and error model parameters using an estimation algorithm or filter. The associated error covariance of

the estimated parameters is also obtained as part of this procedure. The error covariance analysis was

performed using a modified version of JPL's DPTRAJ/ODP software called MIRAGE [3]. MIRAGE offers

an improvement over the ODP in that it is capable of modeling time-varying stochastic parameters that

have different "batch" lengths, that is, time steps over which the parameters are piecewise continuous.

In order to obtain a realistic estimate of the covariance, the dynamic forces affecting the spacecraft

and the error sources affecting the data must be modeled properly. A detailed analysis of these model

parameters has already been performed for the Mars Pathfinder mission; 4 the results will be summa-

rized here. In the filter model, all known dynamic parameters and significant Doppler error sources are

modeled and explicitly estimated. The dynamic parameters included the spacecraft state (position and

velocity), coefficients for solar radiation pressure, random nongravitational accelerations, and spacecraft

maneuvers. The solar radiation pressure and random accelerations both have three components: a radial

one along the Earth line and two cross-line-of-sight ones that are mutually orthogonal to the radial direc-

tion. These are modeled as stochastic Gaussian colored noise parameters; that is, an estimate is made for

the parameters within each batch, and their values from one batch to another are statistically correlated

with a characteristic decorrelation time input by the user. The solar radiation pressure coefficients vary

slowly over the course of the mission as the reflectivity of the spacecraft changes, so the decorrelation

time of these parameters was set to 60 days. The uncertainties are roughly 5 percent of the nominal

values of the coefficients. Stochastic accelerations are needed to model small thruster firings, such as
those used for attitude updates. The size and frequency of these firings result in accelerations with decor-

relation times of 5 to 6 days and an rms magnitude of about 2 x 10 -12 km/s 2 in the radial direction and

1 x 10 -12 km/s 2 in the cross-track directions. Spacecraft maneuvers are deterministic in nature and,

in general, can be modeled as impulsive velocity changes placed at the midpoint of the maneuver time.

Experience on previous missions has shown that the maneuver magnitude can be controlled to around

1-percent accuracy, so the a priori uncertainty in the maneuver parameters was set to 1 percent of the

expected size of the change in velocity (AV) for each midcourse maneuver. No constraints were placed
on the direction. Table 1 summarizes all of the statistical values used in the filter.

Table 1. A priori 1-a uncertainties of filter parameters.

Parameter A priori uncertainty Correlation time

Position (x, y, z) 100.0 km --

Velocity (x, y, z) 1.0 m/s --

Solar radiation pressure coefficient (radial) 0.07 60 days

Solar radiation pressure coefficient (cross-line-of-sight) 0.02 60 days

Stochastic acceleration (radial) 2.4 x 10-12 mm/s 2 5 days

Stochastic acceleration (cross-line-of-sight) 0.8 × 10-12 mm/s2 5 days

Maneuvers 1% of nominal value --

Station locations (spin radius, z-height, longitude) 0.1 m --

Troposphere (wet) 5 cm 2 hours

Troposphere (dry) 5 cm 2 hours

Ionosphere (day) 3 cm 4 hours

Ionosphere (night) 1 cm 1 hour

Pole X and Y 0.1 m 2 days

Earth rotation (UTC) 0.15 m 1 day

4 S. W. Thurman, "Orbit Determination Filter and Modeling Assumptions for MESUR Pathfinder Guidance and Navigation

Analysis," JPL Interoffice Memorandum 314.3-1075 (internal document), Jet Propulsion Laboratory, Pasadena, California,

October 15, 1993.
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Error sources that affect the data include media calibration errors (wet and dry troposphere, day and

night ionosphere), solar plasma effects, Earth platform calibration errors (station location in cylindrical

coordinates, pole location in Cartesian x- and y-coordinates), and Earth rotation (UTC). The delays
in the signal caused by its path through the troposphere and ionosphere are modeled, but errors still

remain. Currently, the troposphere model is good to 5 cm and the ionosphere to 3 cm. 5 The errors vary
at a relatively high frequency, and so the decorrelation time is set to a few hours. The station location

set and its associated uncertainties are the DE234 coordinates developed for use by the Mars Observer
(MO) mission. 6 The station location uncertainties were modified to approximately account for precession

and nutation modeling errors as well. These values are assumed fixed for the duration of the Pathfinder

trajectory. The polar motion and UTC variations can be predicted by the DSN to a level of around 10

to 15 cm, and they vary on the order of 1 to 2 days. The a priori uncertainties of these error model

parameters, along with their characteristic decorrelation time if they are stochastic variables, are also

shown in Table 1. One point to note is that the Mars ephemeris uncertainties were not included in the

filter. This was done so that the computed dispersions reflect only the strengths and weaknesses of the
data in determining the spacecraft trajectory.

When one-way Doppler data are used, several additional error sources must also be taken into account.

For single-station data, the largest error source is the frequency drift of the spacecraft oscillator. Ultra-

stable oscillators of the class used by the Galileo and Mars Observer spacecraft are expected to be stable

to around 1 part in 1012 over time spans of around a day. Over longer time spans, however, the frequency
will wander and must be modeled. The method used to model this error source is to treat the bias as a

random walk parameter. Qualitatively, the random walk model allows the parameter to move away from

its value at the previous batch time step by an amount constrained by its given a priori uncertainty. It

differs from a Gaussian white or colored noise stochastic parameter in that the parameter does not simply

oscillate around its mean value, but is allowed to wander from one time step to the next. This model was

also intended to approximately account for solar plasma fluctuations, which induce frequency variations
on the order of 1 part in 1014 over 1 day. For this study, a fairly modest stability of 1 part in 109 over

the course of a day was assumed to be the nominal. The value for the oscillator bias is updated every

hour, and its a priori sigma corresponds to the change in frequency over an hour expected for the given
stability.

The one-way Doppler phase formulation requires six additional parameters in the estimate list. Phase

data is measured by counting the integer number of zero crossings of the signal; a resolver then determines

the fractional portion of the phase at a given time. Initially, however, there will be an ambiguity in the

number of cycles it took for the signal to reach the ground and the phase when the receiver locks onto
the signal. To account for this, a phase bias at all three DSN stations is included in the filter. The a

priori uncertainty of the bias is set to 1000 cycles (essentially infinity), and the parameter is reset at the
beginning of each pass. Also, during data acquisition, the station clocks have small drifts relative to a

time standard, which cause the phase count to drift as well. The drift is calibrated at the stations using
data from the Global Positioning System, but residual errors remain. The magnitude with which the

drift manifests itself in the phase count is about 6 × 10 -4 cycles/s, so a phase drift parameter with this

value for the a priori uncertainty is also included in the filter. Once again, the parameter is reset at the

beginning of each pass.

The primary advantage of using differenced data is that the spacecraft oscillator drift is effectively

canceled out when the single-station Doppler data are differenced, thus removing a major error source.

However, an additional error source will appear: the asynchronicity of the clocks at the two receiving

stations. Currently, the clocks are calibrated to about the 5-ns level (based on examination of frequency

5 Deep Space Network System Functional Requirements and Design: Tracking System (1988 Through 1993), JPL D-1662,
Rev. C (internal document), Jet Propulsion Laboratory, Pasadena, California, pp. 3-4, April 15, 1993.

6 W. M. Folkner, "DE234 Station Locations and Covariance for Mars Observer," JPL Interoffice Memorandum 335.1-92-013
(internal document), Jet Propulsion Laboratory, Pasadena, California, May 26, 1992.
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and timing standard reports distributed weekly by the DSN) between each pair of stations. Thus, a

parameter that represents this timing mismatch is added to the filter estimate list. In addition, the

differenced phase data still require parameters to model the phase bias and drift which, in this case, are

errors in the differenced phase measurement due to relative clock drifts between the two station pairs. The

magnitudes of the uncertainties are kept the same as before. All one-way measurement error parameters
and uncertainties are summarized in Table 2.

Table 2. A priori 1-a uncertainties of one-way measurement error parameters.

Parameter A priori uncertainty Correlation time

Frequency bias 0.366 Hz

Phase bias 1000 cycles

Phase drift 6.0 x 10 -4 cycles/s

Clock offset 5 ns

Random walk, value reset every hour

White noise, value reset at each pass

White noise, value reset at each pass

White noise, value reset at each pass

V. Results

Although normally the results of a covariance analysis of an interplanetary trajectory are given in terms
of encounter coordinates, the so-called B-plane system, it is more instructive in this case to present the

uncertainties in radial-transverse-normal (RTN) coordinates. In RTN coordinates, the radial direction is

along the Earth-spacecraft vector, the transverse direction is in the plane defined by the radius and the

velocity vector, and the normal direction is perpendicular to both, forming an orthogonal triad. When
viewed in this frame, it is easier to see in which direction the various data types have their greatest

strength.

Table 3 shows the results of the covariance analysis in RTN coordinates for all combinations of data

tried thus far. The first row in the table is a "nominal" result using a standard tracking schedule for

Pathfinder that includes standard two-way Doppler and range. It can be seen that the radial uncertainty

is best determined, with the cross-line-of-sight directions being marginally worse with a maximum uncer-

tainty of 7.2 km. These results when mapped to the Mars B-plane are sufficient to meet the requirements
of Pathfinder.

The second and third rows in the table were obtained using only one-way phase data, weighted at 0.1

and 1.0 cycle, respectively. The result clearly shows the ability of the differential data type to determine

the angular position of the spacecraft as seen from the Earth. Using a data weight of 0.1 cycle, the normal
direction is determined to 11.6 km, which compares fairly well with the 7.2-km result using Doppler and

range. The uncertainty in the transverse direction does not compare quite as well, about a factor of three

times worse than the nominal, but is still at a reasonable magnitude. The radial direction, however,

is very poorly determined, with the uncertainty using differenced-phase data being about two orders of

magnitude worse than the standard case. Changing the data weight from 0.1 to 1.0 cycle has little effect
in the transverse and normal directions but degrades the radial sigma by around 30 percent.

For comparison, the uncertainties using differenced one-way data formulated as Doppler frequency

measurements were also examined (rows 4 and 5 in Table 3). The results are fairly similar to those of

differenced-phase data in the transverse and normal directions when the tighter data weight was used

on the differenced Doppler. With the data weighted at 0.5 mm/s, however, the numbers are degraded

considerably, especially in the radial direction.

Due to its inability to effectively discern the range to the spacecraft, it is highly unlikely that one-way
differenced data alone would be sufficient to satisfy the navigation requirements of any realistic missions.

It is desirable, therefore, to augment the differenced data with another data type, the obvious choice
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Table 3. I-_ dispersion ellipses in RTN coordinates.

No. Data type(s) used Data weight a(R x T x N), km

1 2-way Doppler 0.05 mm/s 3.9 x 6.4 x 7.2
+ 2-way range 2.0 m

2 Differenced 1-way phase 0.1 cycle 360.9 x 20.3 x 11.6

3 Differenced 1-way phase 1.0 cycle 476.8 x 23.9 x 12.1

4 Differenced 1-way Doppler 0.05 mm/s 428.5 x 23.7 x 11.3

5 Differenced 1-way Doppler 0.5 mrn/s 1307.0 x 63.3 x 19.3

6 Differenced 1-way phase 0.1 cycle 66.4 x 10.8 x 11.5

+ 1-way phase 0.1 cycle

7 Differenced 1-way phase 1.0 cycle 68.7 x 12.1 x 12.1

+ 1-way phase 1.0 cycle

8 Differenced 1-way Doppler 0.05 mm/s 76.9 x 12.7 x 11.1

+ 1-way Doppler 0.05 mm/s

9 Differenced 1-way Doppler 0.5 mm/s 254.1 x 33.7 x 18.7

+ 1-way Doppler 0.5 mm/s

10 Differenced 1-way phase 0.1 cycle 6.7 x 8.3 x 11.I

+ 2-way Doppler 0.05 mm/s

11 Differenced 1-way Doppler 0.05 mm/s 6.8 x 8.4 x 10.8

+ 2-way Doppler 0.05 mm/s

12 2-way Doppler 0.05 mm/s 14.4 x 14.4 x 23.7

being single-station one-way data. Rows 6 and 7 in Table 3 show the results of combining one-way phase

with differenced phase at the two data weights. The effect is quite dramatic in the radial direction, with

the uncertainty brought down from 360.9 and 476.8 km to 66.4 and 68.7 km. This is still over an order of

magnitude larger than the nominal case, but it is now at a level that could satisfy mission requirements.

In the transverse direction, the uncertainties were brought down to very near the values of the nominal.

The additional data had almost no effect in the normal direction. It is interesting to note that, with the

additional data, the data weight made very little difference in the final results.

The same effect is seen when one-way Doppler data are added to differenced one-way Doppler at the

tight data weight (row 8 of Table 3). The uncertainty values in the transverse and normal directions are

now fairly close to those obtained with the phase data, and the radial sigma is only worse by around

15 percent. The case with the lower data weight (row 9 of Table 3), however, does not show similar

behavior. The radial sigma has been brought down by an order of magnitude, but its value is still too

large to be of use in many missions.

Rows 10 and 11 in Table 3 show the results of using differenced phase and Doppler augmented by

standard two-way Doppler data at a rate of one pass per week. This result is included to show what to

expect if a spacecraft has a transponder on board but with no ranging capability. These values indicate

that navigation performance is only slightly degraded if two-way range is replaced by the differenced

one-way data types. Comparison with the final row in the table (2-way Doppler only) shows that the

differenced data type improves the solution by a factor of two in all three components.

The results so far using one-way data assume a spacecraft oscillator stability of one in 109 over

the course of a day. The question can then be raised as to how a better or worse oscillator would

affect the orbit determination accuracies. The effect would be negligible if only the differenced data

types were used, but it will make a difference when single-station data are added. Figures 2 and 3 present
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the results when the oscillator stability varies from one part in 107 to one in 1014 over 1 day for the

differenced-phase plus phase and differenced-Doppler plus Doppler cases, respectively. In both cases, the

tighter data weight was assumed. As can be seen from these plots, there is a sharp knee in the curve that

takes place at around the 10 l° value in the radial directions for both phase and Doppler. The transverse

and normal sigmas change very little as a function of oscillator stability. At a stability level of 1012, the

phase formulation case is now quite comparable in all three components to the standard two-way Doppler
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and range results, and the Doppler formulation is only slightly worse. Further improvements in stability

do not seem to make much difference. This implies that a spacecraft carrying an ultrastable oscillator

(USO) of the class used by Galileo or Mars Observer can conceivably approach the navigation accuraciesachieved with two-way data types.

Another useful figure of merit is the amount of single-station one-way data employed. The nominal

results are based on a dense tracking schedule of using every other available pass. Figures 4 and 5 present

the results if the amount of single-station data is reduced to one pass per day, one pass per week, and

one pass per month (the differenced data are assumed to remain at the nominal schedule, and the tight

data weight was used). Once again, it can be seen that the transverse and normal sigmas are affected

very little. The radial sigmas, however, show small changes when the data are thinned to once per day,

and then a marked degradation when thinned further. The effect is more pronounced in the case of the

differenced-phase Doppler formulation, with the radial sigma dropping from its nominal value of around

80 km to a worst case of nearly 200 kin. The phase formulation does not suffer as much, as the decreaseis only from 65 to 120 kin.

120
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2O
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AMOUNT OF 1-WAY PHASE DATA

Fig. 4. Sensitivity of position uncertainty to amount of single-station
data coverage for differenced-phase plus phase data.

VI. Conclusions

The results of this study suggest that a combination of single-station and two-station differenced

one-way data types may be a realistic option for some interplanetary missions. This may be somewhat

surprising because it has long been assumed that a very stable frequency is needed to render one-way data

usable. However, it has been shown here that, with a modest oscillator and the proper mathematical for-

mulation of the data and filter, reasonable results can be obtained by combining data that have different

strengths. In particular, the estimation of the spacecraft's angular position in the sky can be nearly as

good as with standard data types, although the spacecraft's radial position is relatively poorly determined.

If a very good oscillator (stability of 1 part in 1012 over a day, or better) is available, then the accuracy

in all three components may approach those obtained with standard navigation data types. One point

to note, though, is that the oscillator stabilities were measured over a day. For a noncoherent system to be
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confidently used would require preflight testing of the oscillator over these time periods, something that

has not generally been done in the past. Also, the results indicate that the phase formulation of Doppler

data is superior in some respects to the differenced-phase Doppler formulation in terms of navigation

accuracies. At the tight data weights and with good data coverage, the values are comparable, but the

phase data show less sensitivity to decreasing data weights or coverage.

In practice, the choice of using noncoherent data types for navigation depends on the particular

mission scenario and its requirements. In the case of the Mars Pathfinder mission, the geometry of the

trajectory is such that the radial uncertainty maps almost completely into the time-of-flight direction

(parallel to the incoming asymptote of the trajectory) in the Mars B-plane. Since the critical requirement

is to maintain the proper entry angle (determined by the components perpendicular to the incoming

asymptote), the degradation in performance is not severe. For example, if the entire Earth-Mars transfer

were navigated using only differenced and single-station one-way phase, the probability of successful entry

is still approximately 70 percent 7 (the probability is over 99 percent using two-way Doppler data). This

value is obviously too low for Pathfinder to use noncoherent data as its baseline, but it is acceptable as a

backup if the transponder fails. If the spacecraft were to go into orbit, however, the navigation accuracies

using noncoherent data might be adequate, depending on other factors, such as propellant constraints,

orbit maintenance requirements, etc. For missions whose geometry results in the radial sigma being

of primary importance though, the switch to a noncoherent navigation system may not be advisable.

Ultimately, the trade-off between cost and performance must be evaluated on a mission-by-mission basis,

and no one answer is applicable to all cases.

7 p. H. Kallemeyn, personal communication, Navigation Systems Section, Jet Propulsion Laboratory, Pasadena, California,

January 1995.
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In this article, we introduce multiple turbo codes and a suitable decoder structure

derived from an approximation to the maximum a posteriori probabifity (MAP)

decision rule, which is substantially different from the decoder for two-code-based

encoders. We analyze the effect of interleaver choice on the weight distribution of

the code, and we describe simulation results on the improved performance of these

new codes.

I. Introduction

Coding theorists have traditionally attacked the problem of designing good codes by developing codes
with a lot of structure, which lends itself to feasible decoders, although coding theory suggests that codes

chosen "at random" should perform well if their block size is large enough. The challenge to find practical

decoders for "almost" random, large codes has not been seriously considered until recently. Perhaps the

most exciting and potentially important development in coding theory in recent years has been the
dramatic announcement of "turbo codes" by Berrou et al. in 1993 [1]. The announced performance of

these codes was so good that the initial reaction of the coding establishment was deep skepticism, but

recently researchers around the world have been able to reproduce those results [3,4]. The introduction
of turbo codes has opened a whole new way of looking at the problem of constructing good codes and

decoding them with low complexity.

It is claimed these codes achieve near-Shannon-limit error correction performance with relatively simple

component codes and large interleavers. A required Eb/No of 0.7 dB was reported for a bit error rate

(BER) of 10 -5 [1]. However, some important details that are necessary to reproduce these results were
onlitted. The purpose of this article is to shed some light on the accuracy of these claims and to extend

these results to multiple turbo codes with more than two component codes.

The original turbo decoder scheme, for two component codes, operates in serial mode. For multiple-
code turbo codes, we found that the decoder, based on the optimum maximum a posteriori (MAP) rule,

must operate in parallel mode, and we derived the appropriate metric, as illustrated in Section III.

II. Parallel Concatenation of Convolutional Codes

The codes considered in this article consist of the parallel concatenation of multiple convolutional

codes with random interleavers (permutations) at the input of each encoder. This extends the analysis

reported in [4], which considered turbo codes formed from just two constituent codes. Figure 1 illustrates
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a particular example that will be used in this article to verify the performance of these codes. The

encoder contains three recursive binary convolutional encoders, with Mz, M2 and M3 memory cells,

respectively. In general, the three component encoders may not be identical and may not have identical

code rates. The first component encoder operates directly (or through _rz) on the information bit sequence

u = (ul,..., uN) of length N, producing the two output sequences x_i and xlp. The second component
encoder operates on a reordered sequence of information bits, u2, produced by an interleaver, _r2, of

length N, and outputs the sequence X2p. Similarly, subsequent component encoders operate on a reordered

sequence of information bits, u j, produced by interleaver _rj, and output the sequence Xjp. The interleaver
is a pseudorandom block scrambler defined by a permutation of N elements with no repetitions: A

complete block is read into the the interleaver and read out in a specified (fixed) random order. The

same interleaver is used repeatedly for all subsequent blocks. Figure 1 shows an example where a rate

r = 1In = 1/4 code is generated by three component codes with MI =/_I2 = M3 = M = 2, producing

the outputs xzi = u, Xzp = u • gb/ga, X_p = u2 • gb/ga, and x3p = u3 • gb/ga (here 7rz is assumed to be

an identity, i.e., no permutation), where the generator polynomials ga and .qb have octal representation

(7)oc_ and (5)oct_, respectively. Note that various code rates can be obtained by proper puncturing

of Xzp, X2p, X3p, and even xz_ if the decoder works (for an example, see Section IV). The design of the
constituent convolutional codes, which are not necessarily optimum convolutional codes, is still under

investigation. It was suggested in [5] that good codes are obtained if g_ is a primitive polynomial.

We use the encoder in Fig. 1 to generate an (n(N + M), N) block code, where the M tail bits of
code 2 and code 3 are not transmitted. Since the component encoders are recursive, it is not sufficient to

set the last M information bits to zero in order to drive the encoder to the all-zero state, i.e., to terminate

the trellis. The termination (tail) sequence depends on the state of each component encoder after N bits,

which makes it impossible to terminate all component encoders with M predetermined tail bits. This

issue, which had not been resolved in previously proposed turbo code implementations, can be dealt with

by applying the method described in [4], which is valid for any number of component codes.
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A. Weight Distribution

In order to estimate the performance of a code, it is necessary to have information about its minimum

distance, weight distribution, or actual code geometry, depending on the accuracy required for the bounds

or approximations. The challenge is in finding the pairing of codewords from each individual encoder,

induced by a particular set of interleavers. Intuitively, we would like to avoid joining low-weight codewords
from one encoder with low-weight words from the other encoders. In the example of Fig. 1, the component

codes have minimum distances 5, 2, and 2. This will produce a worst-case minimum distance of 9 for the

overall code. Note that this would be unavoidable if the encoders were not recursive since, in this case, the

minimum weight word for all three encoders is generated by the input sequence u -- (00. • • 0000100. • • 000)

with a single "1," which will appear again in the other encoders, for any choice of interleavers. This
motivates the use of recursive encoders, where the key ingredient is the recursiveness and not the fact

that the encoders are systematic. For our example, the input sequence u = (00...00100100...000)

generates a low-weight codeword with weight 6 for the first encoder. If the interleavers do not "break"

this input pattern, the resulting codeword's weight will be 14. In general, weight-2 sequences with
2 + 3t zeros separating the l's would result in a total weight of 14 + 6t if there were no permutations. By

contrast, if the nmnber of zeros between the ones is not of this form, the encoded output is nonterminating
until the end of the block, and its encoded weight is very large unless the sequence occurs near the end

of the block.

With permutations before the second and third encoders, a weight-2 sequence with its l's separated

by 2 + 3tl zeros will be permuted into two other weight-2 sequences with l's separated by 2 + 3t_ zeros,
i = 2, 3, where each t_ is defined as a multiple of 1/3. If any t_ is not an integer, the corresponding encoded

output will have a high weight because then the convolutional code output is nonterminating (until the

end of the block). If all t_'s are integers, the total encoded weight will be 14 + 2 _=1 t_. Thus, one of the

considerations in designing the interleaver is to avoid integer triplets (tl,t2, t3) that are simultaneously

small in all three components. In fact, it would be nice to design an interleaver to guarantee that the
3

smallest value of _i=1 t_ (for integer t_) grows with the block size N.

For comparison, we consider the same encoder structure in Fig. 1, except with tile roles of g_ and

gb reversed. Now the minimum distances of the three component codes are 5, 3, and 3, producing an
overall minimum distance of 11 for the total code without any permutations. This is apparently a better

code, but it turns out to be inferior as a turbo code. This paradox is explained by again considering

the critical weight-2 data sequences. For this code, weight-2 sequences with 1 + 2tl zeros separating the

two l's produce self-terminating output and, hence, low-weight encoded words. In the turbo encoder,

such sequences will be permuted to have separations 1 + 2t_, i = 2, 3, for the second and third encoders,
where now each ti is defined as a multiple of 1/2. But now the total encoded weight for integer triplets

3 3 t
(t l, t2, ta) is 11 + _=_ t_. Notice how this weight grows only half as fast with _-_=_ _ as the previously

calculated weight for the original code. If _=1 ti can be made to grow with block size by the proper
choice of an interleaver, then clearly it is important to choose component codes that cause the overall

weight to grow as fast as possible with the individual separations t_. This consideration outweighs the

criterion of selecting component codes that would produce the highest minimum distance if unpermuted.

There are also many weight-n, n = 3, 4, 5,..., data sequences that produce self-terminating output

and, hence, low encoded weight. However, as argued below, these sequences are much more likely to be

broken up by the random interleavers than the weight-2 sequences and are, therefore, likely to produce
nonterminating output from at least one of the encoders. Thus, turbo code structures that would have

low minimunl distances if unpermuted can still perform well if the low-weight codewords of the component

codes are produced by input sequences with weight higher than two.

B. Random Interleavers

Now we briefly examine the issue of whether one or more random interleavers can avoid matching small

separations between the l's of a weight-2 data sequence with equally small separations between the l's of
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its permuted version(s). Consider, for example, a particular weight-2 data sequence (... 001001000--.),

which corresponds to a low-weight codeword in each of the encoders of Fig. 1. If we randomly select an

interleaver of size N, the probability that this sequence will be permuted into another sequence of the

same form is roughly 2/N (assuming that N is large and ignoring minor edge effects). The probability

that such an unfortunate pairing happens for at least one possible position of the original sequence

(... 001001000-- .) within the block size of N is approximately 1 - (1 - 2/N) g ,_ 1 - e -2. This implies
that the minimum distance of a two-code turbo code constructed with a random permutation is not likely

to be much higher than the encoded weight of such an unpermuted weight-2 data sequence, e.g., 14 for the

code in Fig. 1. (For the worst-case permutations, the dm_n of the code is still 9, but these permutations

are highly unlikely if chosen randomly.) By contrast, if we use three codes and two different interleavers,

the probability that a particular sequence (... 001001000...) will be reproduced by both interleavers is

only (2/N) 2. Now the probability of finding such an unfortunate data sequence somewhere within the

block of size N is roughly 1 - [1 (2/N)2 ] N-- ,_ 4/N. Thus, it is probable that a three-code turbo code

using two random interleavers will see an increase in its minimum distance beyond the encoded weight

of an unpermuted weight-2 data sequence. This argument can be extended to account for other weight-2

data sequences that may also produce low-weight codewords, e.g., (... 00100(000)tl000 -- .), for the code

in Fig. 1. For comparison, let us consider a weight-3 data sequence such as (... 0011100..-), which for our

example corresponds to the minimum distance of the code (using no permutations). The probability that

this sequence is reproduced with one random interleaver is roughly 6/N 2, and the probability that some

sequence of the form (... 0011100...) is paired with another of the same form is 1 - (1 -6/N2) N _ 6/N.

Thus, for large block sizes, the bad weight-3 data sequences have a small probability of being matched with

bad weight-3 permuted data sequences, even in a two-code system. For a turbo code using three codes and

two random interleavers, this probability is even smaller, 1 - [1 - (6/N2) 2] N _ 36/N3. This implies that

the minimum distance codeword of the turbo code in Fig. 1 is more likely to result from a weight-2 data

sequence of the form (-.-001001000...) than from the weight-3 sequence (-.. 0011100..-) that produces
the minimum distance in the unpermuted version of the same code. Higher weight sequences have an

even smaller probability of reproducing themselves after being passed through the random interleavers.

For a turbo code using q codes and q- 1 interleavers, the probability that a weight-n data sequence will

be reproduced somewhere within the block by all q- 1 permutations is of the form 1- [1 - (j3/Nn-1) q-l] N,

where f3 is a number that depends on the weight-n data sequence but does not increase with block size

N. For large N, this probability is proportional to (1/N) nq-n-q, which falls off rapidly with N, when n

and q are greater than two. Furthermore, the symmetry of this expression indicates that increasing either

the weight of the data sequence n or the number of codes q has roughly the same effect on lowering this

probability.

In summary, from the above arguments, we conclude that weight-2 data sequences are an important

factor in the design of the component codes, and that higher weight sequences have successively decreasing

importance. Also, increasing the number of codes and, correspondingly, the number of interleavers, makes

it more and more likely that the bad input sequences will be broken up by one or more of the permutations.

The minimum distance is not the most important characteristic of the turbo code, except for its

asymptotic performance, at very high Eb/No. At moderate signal-to-noise ratios (SNRs), the weight
distribution for the first several possible weights is necessary to compute the code performance. Estimating

the complete weight distribution of these codes for large N and fixed interleavers is still an open problem.

However, it is possible to estimate the weight distribution for large N for random interleavers by using

probabilistic arguments. (See [4] for further considerations on the weight distribution).

C. Design of Nonrandom and Partially Random Interleavers

Interleavers should be capable of spreading low-weight input sequences so that the resulting codeword

has high weight. Block interleavers, defined by a matrix with uT rows and uc columns such that N = u_ x _,

may fail to spread certain sequences. For example, the weight-4 sequence shown in Fig. 2 cannot be broken
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by a block interleaver. In order to break such sequences, random interleavers are desirable, as discussed

above. (A method for the design of nonrandom interleavers is discussed in [3]). Block interleavers are

effective if the low-weight sequence is confined to a row. If low-weight sequences (which can be regarded as
the combination of lower-weight sequences) are confined to several consecutive rows, then the Uc columns

of the interleaver should be sent in a specified order to spread as much as possible the low-weight sequence.

A method for reordering the columns is given in [7]. This method guarantees that for any number of

columns uc = aq + r, (r <_ a - 1), the minimum separation between data entries is q - 1, where a is

the number of columns affected by a burst. However, as can be observed in the example in Fig. 2, the

sequence 1001 will still appear at the input of the encoders for any possible column permutation. Only

if we permute the rows of the interleaver in addition to its columns is it possible to break the low-weight

sequences. The method in [7] can be used again for the permutation of rows. Appropriate selection of a

and q for rows and columns depends on the particular set of codes used and on the specific low-weight

sequences that we would like to break.

We have also designed semirandom permutations (interleavers) by generating random integers i,

1 < i < N, without replacement. We define an "S-random" permutation as follows: Each randomly

selected integer is compared to S previously selected integers. If the current selection is equal to any

S previous selections within a distance of +S, then the current selection is rejected. This process is

repeated until all N integers are selected. The searching time for this algorithm increases with S and

is not guaranteed to finish successfully. However, we have observed that choosing S < v/-N/2 usually

produces a solution in a reasonable time. Note that for S -- 1, we have a purely random interleaver. In
the simulations, we used S = 31 with block size N = 4096.

III. Turbo Decoding for Multiple Codes

In this section, we consider decoding algorithms for multiple-code turbo codes. In general, the ad-
vantage of using three or more constituent codes is that the corresponding two or more interleavers have

a better chance to break sequences that were not broken by another interleaver. The disadvantage is

that, for an overall desired code rate, each code must be punctured more, resulting in weaker constituent

codes. Ill our experiments, we have used randomly selected interleavers and interleavers based on the

row-column permutation described above.

A. Turbo Decoding Configurations

Tile turbo decoding configuration proposed in [1] for two codes is shown schematically in Fig. 3. This

configuration operates in serial mode, i.e., "Dec 1" processes data before "Dec 2" starts its operation,

and so on. An obvious extension of this configuration to three codes is shown in Fig. 4(a), which also

operates in serial mode. But, with more than two codes, there are other possible configurations, such as

that shown in Fig. 4(b), where "Dec 1" communicates with the other decoders, but these decoders do
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Fig. 3. Decoding structure for two codes.
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Fig. 4. Different decoding structures for three codes:
(a) serial, (b) master and slave, and (c) parallel.

not exchange information between each other. This "master and slave" configuration operates in a mixed

serial-parallel mode, since all other decoders except the first operate in parallel. Another possibility,

shown in Fig. 4(c), is that all decoders operate in parallel at any given time. Note that self loops are not

allowed in these structures since they cause degradation or divergence in the decoding process (positive

feedback). We are not considering other possible hybrid configurations. Which configuration performs

better? Our selection of the best configuration and its associated decoding rule is based on a detailed

analysis of the minimum-bit-error decoding rule (MAP algorithm), as described below.

B. Turbo Decoding for Multiple Codes

Let Uk be a binary random variable taking values in {0, 1}, representing the sequence of information

bits u = (Ul,-.., UN). The MAP algorithm [6] provides the log likelihood ratio Lk, given the received

symbols y:

P(uk = liy) (1)
Lk = log P(uk O[y)

log Eu:,k=l P(ylu) _ek P(uj) P(uk = 1)+ log (2)
E,:,k=0 P(yiu) 1-Ij#k P(uj) P(uk = O)
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Fig. 5. Channel model.

For efficient computation of Eq. (2) when the a priori probabilities P(uj) are nonuniform, the modified

MAP algorithm in [2] is simpler to use than the version considered in [1]. Therefore, in this article, we
use the modified MAP algorithm of [2], as we did in [4].

The channel model is shown in Fig. 5, where the n_k's and the npk'S are independent identically

distributed (i.i.d.) zero-mean Gaussian random variables with unit variance, and p = _/No is the

SNR. The same model is used for each encoder. To explain the basic decoding concept, we restrict

ourselves to three codes, but extension to several codes is straightforward. In order to simplify the

notation, consider the combination of permuter and encoder as a block code with input u and outputs

xi, i = 0, 1,2, 3(x0 = u) and the corresponding received sequences y_, i = 0, 1, 2, 3. The optimum bit

decision metric on each bit is (for data with uniform a priori probabilities)

Lk = log _.:uk=l P(yolu)P(Yl[u)P(Y21u)P(Y3f u)
_-]_u:uk=0 P(yolu)P(Y 1[u)P(y2Iu)P(Y31 u)

(3)

but in practice, we cannot compute Eq. (3) for large N because the permutations 7r2, 7r3 imply that Y2

and Y3 are no longer simple convolutional encodings of u. Suppose that we evaluate P(yilu), i = 0, 2, 3

in Eq. (3) using Bayes' rule and using the following approximation:

N

P(ulYi) _ 1-I/5'(uk) (4)
k=l

Note that P(uly_ ) is not separable in general. However, for i = 0, P(uly0 ) is separable; hence, Eq. (4)

holds with equality. If such an approximation, i.e., Eq. (4), can be obtained, we can use it in Eq. (3) for

i = 2 and i = 3 (by Bayes' rule) to complete the algorithm. A reasonable criterion for this approximation
N

is to choose l-]k=1/5,(uk) such that it minimizes the Kullback distance or free energy [8,9]. Define L,ik by

euk L,k

[',(_,k)= _ (5)
1 + eL,_

where u_ E {0, 1}. Then the Kullback distance is given by

eE,_, _,.L,.

F(£,)=_ N 1 log g 1 eL,k)P(uJy_)IL=I( +
(6)
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Minimizing F(l_i) involves forward and backward recursions analogous to the MAP decoding algorithm,

but we have not attempted this approach in this work. Instead of using Eq. (6) to obtain {/5} or,

equivalently, {L_k}, we use Eqs. (4) and (5) for i = 0, 2, 3 (by Bayes' rule) to express Eq. (3) as

Lk = Y(Yl,LO,L2,L3, k) + gok + L2k + g3k (7)

where Lok = 2pyok and

f(yl,Lo,L2,L3, k) = log

~ . _

2u:uk=l P(Yll u) l-/jCk e_'J(L"j+L_j+L_J)
(8)

We can use Eqs. (4) and (5) again, but this time for i = 0, 1, 3, to express Eq. (3) as

Lk = f(y2, Lo,L1,L3, k) + Lok + Llk + Lak (9)

and similarly,

Lk = f(y3, Lo,L1,L2, k) + Lok + Llk + g2k (10)

A solution to Eqs. (7), (9), and (10) is

Llk = f(yl,LO,L2,Lz,k); L2k = f(y2, Lo, Li,L3,k); Lak = f(yz,Lo,L1,L2,k) (11)

for k = 1, 2,..., N, provided that a solution to Eq. (11) does indeed exist. The final decision is then
based on

Lk = Lok + Llk + L2k + L3k (12)

which is passed through a hard limiter with zero threshold. We attempted to solve the nonlinear equations

in Eq. (11) for !_1, 1_2, and [,3 by using the iterative procedure

m+l) (rn) e," f Iv(m) "It(m) 1_\
lk = Ol I .]" [yl, .taO, ia 2 ,xa 3 ,r_] (13)

for k = 1 2,... N, iterating on m. Similar recursions hold for _(m) and _(m) The gain c_ 'n) should
' ' _2k _3k '

be equal to one, but we noticed experimentally that better convergence can be obtained by optimizing

this gain for each iteration, starting from a value slightly less than one and increasing toward one with

the iterations, as is often done in simulated annealing methods. We start the recursion with the initial

condition I [,_0) = [,_0) = [,_0) = [,0. For the computation of f(.), we use the modified MAP algorithm

as described in [4] with permuters (direct and inverse) where needed, as shown in Fig. 6 for block
decoder 2. The MAP algorithm always starts and ends at the all-zero state since we always terminate

the trellis as described in [41. Similar structures apply for block decoder 1 (we assumed 7rl = I identity;
however, any 7rl can be used) and block decoder 3. The overall decoder is composed of block decoders

1 Note that the components of the l_i's corresponding to the tail bits, i.e., Lik, for k = N + 1,..., N + M, are set to zero

for all iterations.
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Fig. 6. Structure of block decoder 2.

connected as in Fig. 4(c), which can be implemented as a pipeline or by feedback. We proposed an

alternative version of the above decoder in [10]. At this point, further approximation for turbo decoding

is possible if one term corresponding to a sequence u dominates other terms in the summation in the

numerator and denominator of Eq. (8). Then the summations in Eq. (8) can be replaced by "maximum"

operations with the same indices, i.e., replacing )--_u:_k=i with u:m_xi for i = 0, 1. A similar approximation

can be used for L2k and L3k in Eq. (11). This suboptimum decoder then corresponds to a turbo decoder

that uses soft output Viterbi (SOVA)-type decoders rather than MAP decoders.

C. Multiple-Code Algorithm Applied to Two Codes

For turbo codes with only two constituent codes, Eq. (13) reduces to

L(rn+l) = alm)f(yl,Lo,_(m) k)lk

L(m+l) = o_m)f(y2,LO, L_ m) k)
2k

for k = 1,2,-.., N and m = 1, 2,..., where, for each iteration, a_ m) and a_ m) can be optimized (simulated

annealing) or set to 1 for simplicity. The decoding configuration for two codes, according to the previous

section, is shown in Fig. 7. In this special case, since the two paths in Fig. 7 are disjoint, the decoder

structure reduces to duplicate copies of the structure in Fig. 3 (i.e., to the serial mode).

o Q •

Fig. 7. Parallel structure for two codes.

If we optimize a_ m) and O_ rn), our method for two codes is similar to the decoding method proposed

in [1], which requires estimates of the variances of Llk and L2k for each iteration in the presence of

errors. In the method proposed in [2], the received "systematic" observation was subtracted from Llk,

which results in performance degradation. In [3] the method proposed in [2] was used but the received

"systematic" observation was interleaved and provided to decoder 2. In [4], we argued that there is no
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need to interleave the received "systematic" observation and provide it to decoder 2, since L0k does this

job. It seems that our proposed method with c_ m) and _'_) equal to 1 is the simplest and achieves the

same performance reported in [3] for rate 1/2 codes.

D. Terminated Parallel Convolutional Codes as Block Codes

Consider the combination of permuter and encoder as a linear block code. Define Pi as the parity

matrix of the terminated convolutional code i. Then the overall generator matrix for three parallel codes
is

G = [I 7rip 1 7r2P 2 71-3P3]

where n_ are the permutations (interleavers). In order to maximize the minimum distance of the code

given by G, we should maximize the number of linearly independent columns of the corresponding parity

check matrix H. This suggests that the design of P, (code) and _r_ (permutation) are closely related, and

it does not necessarily follow that optimum component codes (maximum dmi_) yield optimum parallel
concatenated codes. For very small N, we used this concept to design jointly the permuter and the
component convolutional codes.

IV. Performance and Simulation Results

For comparison with the new results on three-code turbo codes, we reproduce in Fig. 8 the performance

obtained in [4] by using two-code K = 5 turbo codes with generators (1,gb/ga), where ga = (37)octat
and gb ---- (21)octal, and with random permutations of lengths N = 4096 and N = 16384. The best

performance curve in Fig. 8 is approximately 0.7 dB from the Shannon limit at BER = 10 -4. We also

repeat for comparison in Fig. 8 the results obtained in [4] by using encoders with unequal rates with

two K = 5 constituent codes (1,gb/ga,gc/ga) and (gb/ga), where ga = (37)octat, gb = (33)octal, and
g¢ = (25)o¢t_L. To show that it is possible not to send uncoded information for both codes, we used an

overall rate 1/2 turbo code using two codes with K = 2 (differential encoder) with generator (gb/ga),

where ga ---- (3)octal and gb = (1)o_t_l, and a K = 5 code with generator (gb/9_), where ga = (23)o_t_t and

gb = (33)octal. A bit error rate of 10 -5 was achieved at BSNR = 0.85 dB using an S-random permutation
of length N = 16,384 with S = 40.

A. Three Codes

The performance of two different three-code turbo codes with random interleavers is shown in Fig. 9

for N = 4096. The first code uses three recursive codes shown in Fig. 1 with constraint length K = 3.

The second code uses three recursive codes with K = 4, g_ = (13)octal, and gb = (ll)octal. Note that

the nonsystematic version of the second encoder is catastrophic, but the recursive systematic version is

noncatastrophic. We found that this K = 4 code has better performance than several others.

As seen in Fig. 9, the performance of the K = 4 code was improved by going from 20 to 30 iterations.

We found that the performance could also be improved by using an S-random interleaver with S = 31.

V. Conclusions

We have shown how three-code turbo codes and decoders can be used to further improve the coding

gain for deep-space applications as compared with the codes studied in [4]. These are just preliminary

results that require extensive further analysis. In particular, we need to improve our understanding of

the influence of the interleaver design on the code performance and to analyze how close the proposed
decoding algorithm is to maximum-likelihood or MAP decoding.



These new codes offer better performance than the large constraint-length convolutional codes em-

ployed by current missions and, most importantly, achieve these gains with much lower decoding com-

plexity.

10-1
CODE RATE = 1/4

10-2

K=15
GALILEO
CODE

10-3
rn TWO K=

(DIFFERENT
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M= 20

10-4
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N = 4096
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TWO K= 5 CODES
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N = 16,384
M= 20

Fig. 8. Two-code performance, r= 114.
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Fig. 9. Three-code performance, r= 114.
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Previous estimates on the degradations due to a subcarrier loop assume a square-

wave subcarrier. This article provides a closed-form expression for the degradations
due to the subcarrier loop when a finite number of harmonics are used to demod-

ulate the subcarrier, as in the case of the buffered telemetry demodulator. We

compared the degradations using a square wave and using finite harmonics in the
subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using

tlnite harmonies leads to a lower degradation. The analysis is under the assumption

that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This

assumption is valid for first-order loops.

I. Introduction

In an imperfect subcarrier demodulation, the difference between the phase of the reference signal and
that of the subcarrier of the received signal causes the signal power to degrade while the noise power

remains the same. This degradation is measured as the ratio of the reduced symbol energy-to-noise density

ratio (Es/No), or symbol signal-to-noise ratio (SNR), to the symbol SNR of an ideal demodulation where

the phase difference is zero. The degradations due to the subcarrier loop were previously computed

assuming a square wave [3]. This assumption is inappropriate in the case where only a finite number
of harmonics of the subcarrier are there to be demodulated, as in the buffered telemetry demodulator

(BTD) [2]. This article provides a closed-form expression for computing the degradation due to a finite-
harmonic subcarrier tracking loop. Numerically, we found that, for low loop SNR cases, we actually have

less degradation using a finite number of harmonics than using "all" the harmonics, namely, the square

wave. The degradation due solely to the subcarrier loop using four harmonics is 0.15 to 0.3 dB lower

than that using a square wave for loop SNRs in the range of 14 to 30 dB.

At first glance, the above may seem to contradict the intuition that the more harmonics we use, the

higher the SNR we should get. This intuition is correct when the loop SNR is high, that is, when the jitter

of the phase difference (between the true and the reference phases) is low. At low loop SNRs, however,
we have a different scenario.

To explain this, let us first take a look at how the subcarriers are demodulated. A square-wave

subcarrier is demodulated by multiplying the received signal by a square-wave reference signal. When we

only have a finite number of harmonics of the square-wave subcarrier, the current design for the BTD [2]
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demodulates the subcarrier by multiplying each received harmonic by its reference signal and combining

the resulting harmonics with the weights of 1/n, where n indicates the nth harmonic. In the case of

square-wave subcarrier demodulation, we are implicitly combining the harmonics the same way, only now

we have an infinite number of harmonics (see the Appendix for the proof). The reference signals are

generated by using the phase of the fundamental frequency component or the first harmonic.

Therefore, if the first harmonic has a phase noise with a standard deviation of a, then the nth harmonic

will have a phase noise with a standard deviation of na, which implies that the nth harmonic will suffer

a higher degradation than the first one. At low loop SNtt% the degradations in higher harmonics can be

even higher than the SNR that they contribute. In such cases, higher harmonics should not be used in
the subcarrier demodulation.

In the full spectrum combining case [1], more harmonics means that more data need to be transmitted
to the combining location or stored locally. In the case of intercontinental arraying, where data transmis-

sion becomes expensive, suppressing higher harmonics becomes an important issue. Later in this article,

we will show that, for a given loop SNR, there is an optimum number of harmonics that should be used,

and in the region of the operating loop SNRs, these numbers are mostly finite.

To compare the degradations when using finite harmonics and a square wave, we first give an expres-

sion to compute the degradations using a square wave, assuming that the phase noise has a Tikhonov

distribution. This assumption is valid for first-order loops only [1]. For higher loop SNRs, the degradation
due to the phase noise with a Tikhonov distribution is very close to that due to a phase noise with a

Gaussian distribution. In the range of the operating loop SNRs, the two distribution assumptions lead to

similar results. We then give an expression of degradation for finite-harmonic subcarrier demodulation,

assuming that the phase noise has a Tikhonov distribution.

II. Square-Wave Case

When the subcarrier is a square wave, the degradation due to the subcarrier loop has the form [1]

c 2 =1-_[¢sc[+ 4 2

where ¢_ is the phase noise in the square-wave subcarrier tracking loop.

assumed to have a Gaussian distribution with zero mean and a variance of a 2, then [1]

= (T

= G 2

The degradation due to the subcarrier loop is [1]

C_cv.,, = 1 - a + a 2

(1)

If the phase noise, ¢_c, is

(2)

While the Gaussian assumption is accurate for high loop SNR cases, Tikhonov distribution is a better

assumption for low loop SNR cases. Note that the Tikhonov assumption is valid for first-order loops. If
the phase noise ¢8_ in a Costas loop is assumed to have a Tikhonov distribution, then we can show that
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I¢_cl--=/
-_/2

exp [(1/4)p_ cos2¢_dI¢_1d¢,_
_rZo(m_14)

7r 1 _ ik(Pscl4) (-1)'. - 1
4 + _rlo(p.c/4) E k _

k=l

(3)

eL=

,,/2

/
-lr/2

exp [(114)p,c cos 2¢sc] ¢_c d¢,c
7rlo(psc/4)

'a"2 1 _ (-1) k

= I-2+ Io(P_14) E Ik(pscl4)- -'_ (41
k=l

where Ik is the modified Bessel function of order k, and p_c is the subcarrier-loop SNR, which can be

computed using

I 1 ]-1
4 I Pd 1+

Psc = r2 B_cWsc No 2E-_/No
(_)

Here Bsc denotes the one-sided subcarrier loop bandwidth, Wsc denotes the subcarrier window size [2],

Pd/No denotes the total data power over the one-sided noise density, and Es/No denotes the symbol

energy-to-noise density ratio.

Note that Eqs. (3) and (4) are different from Eqs. (22) and (23) in [1] in that the former are for Costas

loops and the latter are for phase-locked loops. Assuming a Tikhonov distribution, the degradation due

to the subcarrier loop is

_c.. = "_ + 7r2 Io(psc/4) /k(psc/4 (6)
k=l

III. Finite Number of Harmonics Case

When a finite number of harmonics are used to track and demodulate the subcarrier, as in the BTD,

the signal amplitude has the form [2]

L-I [(2m ÷ 1)¢.c] (7)8 cos

S.c = _-_ E (2m + 1) 2
m=0

where L is the number of harmonics and ¢s¢ is the phase noise resulting from the subcaxrier tracking

loop. Clearly, when Csc = 0, we have the ideal case,
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L-1
8 1

= -- _--2Ssc,,z,,,, 7r2 (2m + 1) 2
rn=O

(8)

Taking the ratio of Eq. (7) and Eq. (8), we obtain the signal-amplitude degradation,

_8C

C8 C --

S$C_denl

L-1

_m:o (cos [(2m + 1)¢sc]/(2m + 1) 2)
L-1

_m:0 (1/(2m+ 1) 2)
(9)

Squaring Eq. (9) and taking the expectation, we have the signal power degradation,

C2 = 1 L-IE L-1E COS 2(771 -- 7/)¢sc -]- COS 2(m -H 7/ -I- 1)¢sc (10)

( L-1 )2 2(2m + 1)2(2n + 1) 2_2rn=0 [1/(2m + 1) 2] m:o n=o

The noise power after the subcarrier demodulation is not affected by the phase noise in the subcarrier

loop. This can be observed from the noise power expressions in Eqs. (A-28) and (A-29) of [2]. This

implies that the degradation in the symbol SNR is the same as the signal-power degradation as given in
Eq. (10).

For first-order Costas loops, the phase noise Csc has a Tikhonov distribution:

{exp[(1/4)p_c cos(2¢_)] zr
P(¢sc) = ZrIo(ps_/4) , I¢_cl<-

0, otherwise
(11)

Hence we have,

cos(he,c)- I_/2(psc/4)
Io(psc/4) (12)

where n is an even number, In is the modified Bessel function of order n, and P_c is the subcarrier-loop
SNR.

Plugging Eq. (12) in Eq. (10), we have

L-1 L-1

1 1 I,,,_,_(ps_/4) + Im+,,+,(p_/4)
C2c = L-1 2 Io(Ps_/4) _ E (13)

( ) 1)2(27/_m=0 [1/(2m + 1) 2] m=0 n=0 2(2m + + 1) 2

As L approaches infinity, Eq. (13) becomes identical to Eq. (6) (see the Appendix for the proof).

For L = 4, we have the SNR degradation due to the subcarrier loop,
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1 [ ....... 11(psc/4) ........ I2(psJ4)

C_¢ = C-1 2 L0"507181+ U.DID6¢z_ -i-U.lO_Ol_--
(_-]m=0 [1/(2m + 1)2]) Io(p8_/4) Io(p,¢/4)

+ 0.06658113(ps¢/4) + ........ I4(psJ4___._)+ O.O0306757Is(psc/4)

I6(p_/4) 0.000208247_]
+0.000816327-- + IT(psi�4)

Io(Psc/4)

The subcarrier-loop SNR, p_¢, can be computed using the following equations: 1

a_2 Pd ( 1 ) -1P'_ _B,_ No _ + 2E,/-------_o

(14)

where

L-1
8 1

= _ ,_o (2m+ 1)_

L-1
8

n=0

L-1

8Z2= _-_ wn
/i

n=0

and

sin[(2n + 1)(r/2)Ws¢]

2n+l

For different loop SNRs, the degradations C_ca, q, C2sc.,,, and C_c in Eqs. (2), (6), and (14), respectively,
are plotted in Fig. 1. Figure 2 shows the achievable subcarrier-loop SNR for both square wave and four

harmonics for Pd/No = 15 dB-Hz at a symbol rate of 100 sym/s with a suppressed carrier. The window
sizes in the subcarrier loops for the square wave and the four harmonics are Wsc = 1/4 and W_¢ = 1/16,

respectively. For the above parameters, the achievable subcarrier-loop SNRs are almost the same.

IV. Optimum Number of Harmonics

To make a fair comparison among the square wave and different numbers of harmonics in the subcarrier,

we should compare the losses due to all three loops (carrier, subcarrier, and symbol) and the harmonic
cutoffs, since the harmonic cutoffs also affect the carrier and symbol loop SNRs. The degradation due

1 H. Tsou, personal communication, Communications Systems Research Section, Jet Propulsion Laboratory, Pasadena,

California, October 1994.
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Fig. 2. Subcarrier loop SNR versus loop
bandwidth.

to the suppressed-carrier loop can be found in [3], while the degradation due to the symbol loop can be

found in [1]. Finally, the degradation due to the harmonic cutoffs can be found in [4].

With the number of harmonics limited to less than or equal to four, we compare the degradations in

all loops, including the loss due to using a finite number of harmonics. For a particular set of parameters,

the comparison is shown in Fig. 3. It can be observed that for a subcarrier-loop SNR below 16 dR,

adding the fourth harmonic does not increase symbol SNR. On the other hand, the loop may lose lock

for a subcarrier-loop SNR below 16 dR, so the region of operation has to be greater than 16 dR. For this

region, using four harmonics will lead to a lower degradation than will using fewer harmonics.

Without any limitation on the number of harmonics, we computed the degradations due to all three

loops and to the harmonic cutoffs. For the same set of parameters, we plotted the degradation versus

the subcarrier-loop SNR for different numbers of harmonics, as shown in Fig. 4. We found the optimum

numbers of harmonics for three regions of subcarrier-loop SNR and tabulated them in Table 1. By the

optimum number of harmonics, we mean that, using more harmonics than the optimum will result in a

higher degradation in symbol SNR. Note that this table only applies to the set of parameters listed in

Fig. 4.
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Table1.Optimumnumber of harmonics.

SC loop SNR, Optimum number
dB of harmonics

16.0 to 17.0 4

17.0 to 18.8 5

18.8 to 203 6

V. Conclusion

In this article, we presented a closed-form expression to compute the degradation due to the subcarrier

loop when only a finite number of harmonics are used to demodulate the subcarrier. This expression

assumes that the phase noise has a Tikhonov distribution, which is valid for first-order loops. Using this

expression, we computed the degradations in the subcarrier loop for different numbers of harmonics in

the subcarrier and found that, in certain regions of the subcarrier-loop SNRs, using a finite number of

harmonics leads to a lower degradation in symbol SNR than does using all harmonics or a square wave.
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Appendix

As the Number of Harmonics Approaches Infinity

To prove that Eq. (13) approaches Eq. (6) as the number of harmonics approaches infinity, it suffices
to prove that

1 _--_-_cos2(m-n)¢+cos2(m+n+l)¢
(}-_=0 [1/(2m + 1)2]) 2 m=o_,=o -2-(2--m---+1)-_2n-+ _2

1 4 _ cos(2k¢)= 5 + _ k2 (A-l)
k=l

Expanding the left side of the above equation and ignoring the coefficient before the summations, which
has the value (8/7r2) 2, we have

1 _ _ cos(2(m-n)¢) _ _ cos[2(m+n+l)¢]
left side = E 2(2m + 1) 4 + E 2(2---ram_-_))2_n_i)2 + 2--_m_-_V(_-__ _) 2 (A-2)

rn=0 m=0 n=O,nCm m=0 n=0

The first term of "left side" is

1 1(__) 2m=0 2(2m + 1) 4 - 3 (A-3)

For the second term of "left side," let k = rn - n. For a fixed n, k runs from -n to infinity. The second
term becomes

cc _ cos(2(m - n)¢) _ _ cos 2k¢Z 2(_TK2_T]) 2 = 2(2_ + 1 + 2k)2(2_+ 1)2
m=0 n=O,n_rn n=0 k=-n k_O

2 (2n + 1 + 2k)2(2n + 1) 2
k=l n=0

-_ cos 2k¢+ 2(2_ i --2k)2
n=0 k=l

(A-4)

The inner sum of the first term in the above equation is

E (2n + 1 + 2k)2(2n + 1) 2
n=0

, 1(2k) z (2n + 1 + 2k) 2 + _-_ 2n + 1 + 2k
n.=0 =

+ _ (2n + 1) 2 (2k) 3 2n + 1

(2k):_ q=O 2q + 1 (2k)3 q_o 2q + 1
(A-5)
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For the third term of "left side," let p = m + n + 1. Then, for a fixed m, p runs from m + 1 to infinity.

The third term becomes

_ cos(2(m+n+ 1)¢) o_ _ cos2p¢
m=On=O 2(--_-m7]_n ___))2 = m=0Zp=m+l 2(2m + 1)2(2m + 1 -- 2p) 2

cos 2p¢ _ 1 _ _ cos 2p¢
= 2 (2m + 1 - 2p)2(2m + 1) 2 - 2(2m + i ---2p) 2

p=l rn=0 m=0 p=l

(A-6)

The inner sum of the first term in the above equation is

Z (2m + 1 - 2p)2(2m + 1) 2
rn=0

1 _ 1 4 _ 1
(2p) 2 (2m + 1 - 2p) 2 (2k)3 Z 2m + 1 - 2p

rn=0 m=0

1 oo 1 4 _, 1
+ (-_o: (2rn+l) 2 +_m=02m+l

1 1 4 p-1

(2p) 2 +q_o2q+l= +(-_ = 2q+l
(A-7)

Substitute Eq.(A-5) in Eq. (A-4), and Eq. (A-7) in Eq. (A-6), and then, adding the results, we have
the sum of the second and third terms of "left side":

OO OG OG

o¢ cos(2(m - n)¢) _ _ cos(2(m + n + 1)¢) cos2k¢ _r2
2_2 Z 2(_mmTT_nTi) 9 + z_., z_, 2(-_Tm+ lp0; _-T)-2 : Z (2k)2 4

m=0 n=O,nTkra ra=0 n=0 k=l

(A-S)

Finally, adding the first term to the above, and multiplying the coefficient (8/71"2)2 , we have "left side"

equal to

1 4 _ cos2k¢ (A-9)left side = _ + _-5 k 2
k=l
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The optimum phase detector is presented for tracking square-wave subcarriers

that have been bandwidth limited to a finite number of harmonics. The phase detec-

tor is optimum in the sense that the loop signal-to-noise ratio (SNR) is maximized

and, hence, the rms phase tracking error is minimized. The optimum phase detector

is easy to implement and achieves substantial improvement. Also presented are the

optimum weights to combine the signals demodulated from each of the harmonics.

The optimum weighting provides SNR improvement of 0.1 to 0.15 dB when the

subcarrier loop SNR is low (15 dB) and the number of harmonics is high (8 to 16).

I. Introduction

This work was motivated by the need for near-optimum demodulation of the extremely weak signal

received from the Galileo spacecraft. This demonstration is accomplished in the buffered telemetry

demodulator (BTD). Since the BTD is a software demodulator, it is practical to tailor the processing

more closely to the Galileo signal conditions than would be practical in other systems, such as the

Block V Receiver.

A limitation of the BTD is that the input signal has been recorded by the full spectrum recorder

and contains only the first four harmonics of the originally transmitted square-wave subcarrier. The

subcarrier phase detector initially implemented in the BTD uses a windowing technique similar to that

used in the Advanced Receiver II and the Block V Receiver [1] but modified for the four-harmonic case

[3]. There is a parameter, Wsc, that is analogous to the fractional window width in a square-wave sub-

carrier phase detector. As shown in Fig. 1, this phase detector results in a degradation (loss in symbol

signal-to-noise ratio (SNR) due to harmonic truncation and phase tracking error), which does not mono-

tonically decrease as the number of harmonics is increased. 1 In fact, when the tracking error is large, and

when the harmonics are combined using the usual 1In weighting for the nth harmonic, it is sometimes

better to use only four harmonics than to use all harmonics. This suggests two things: First, it tells us that

1 Based on work by D. Rogstad, Tracking Systems and Applications Section, and Y. Feria, Communications Systems

Research Section, Jet Propulsion Laboratory, Pasadena, California, October 1994.
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Fig. 1. Degradation as a function of the number of
harmonics, using the current BTD.

the phase detector may not be using the harmonics optimally. Second, it indicates that the demodulated

harmonics may not be optimally combined.

The phase detector used in [3] is derived from a window used on a square-wave subcarrier loop. This

phase detector may not be the optimum for a finite-harmonic subcarrier. As a previous work [2] indicates,

the higher harmonics get larger phase noise jitters. Therefore, the effective signal amplitude on the nth

harmonic is no longer 1/n but some number smaller than that. The optimum weights to combine the

demodulated harmonics should account for the SNR losses due to the loop.

II. Optimum Phase Detector

Here we derive a phase detector (PD) that is optimum in the sense that the loop SNR is maximized.

To show the derivation, let us first take a look at the current phase detector used in the BTD. The

current phase detector is the product of the combined in-phase signals v/-_dk cos¢c(8/Tr 2) L-1_-_n=O(1/(2n
2 L-1

+ 1) 2) cos[(2n + 1)¢sc] and the combined quadrature signals v_dk cos¢c(8/zr ) _-_n=o wn(1/(2n

+ 1))sin[(2n + 1)_sc] where the Wn are the weights used to combine the quadrature signals and, in

the current BTD, these weights are

W_. t

sin[(2n + 1)(Tr/2)W_c]

2n+l

The loop SNR using the current BTD is derived as2

( 1),aft 2 Pd a +
P'c 7B,c No 2E_/No

where

2 H. Tsou, personal communication, Communications Systems Research Section, Jet Propulsion Laboratory, Pasadena,

California, October 1994.
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8 v'-,L-I 1

= 2_., (2n+

8 L-1

n=O

L-1
8

nmO

where L is the total number of harmonics used in the phase detector, Pd/No is the data power-to-noise

ratio, Es/No is the symbol SNR, and Bsc is the subcarrier loop bandwidth.

Now in order to maximize the subcarrier loop SNR, p_c, let wk, k = 0, .. -, L - 1, be unknown and a

be the same as before, and differentiate the loop SNR, p_, with respect to Wk and set the expression to
zero. We then have

oqpsc 233'- 2fl2wk 1 Pd o_

Owk 7 2 B_ No a + 1/(2Es/No)

= 0 (1)

Since Pd/No _ O, a _ O, and 7, Bsc are finite, the above is zero if and only if

7 -- flWk = 0

That is,

L-1 L-1

n=O n=O

or

L-1

E w,_(wn - wk) = O, for all k
n=O

which implies that

w_ = wk, for all n and k

The conclusion is that the optinmm weights to combine the quadrature signals in the phase detector

are a constant for all (finite) harmonics. Note that, for infinite harmonics, the parameters /3 and 7 do

not converge; therefore, the above weights cannot be used for square waves. When the optimum weights

are used in the phase detector, the loop SNR becomes
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L Pd a
P,c - Bsc No a + 1/(2E,/No) (2)

Using the optimum weights in the phase detector (called the optimum phase detector), we can improve

the loop SNR by 9.5 dB over the current BTD with window size = 1, and by 1.1 dB over the current

BTD with window size = 1/4 (see Fig. 2). The same figure also shows that, using the optimum phase

detector, the loop SNR obtained by using only one harmonic is higher than that using the current BTD

with the window size being either 1 or 1/2. Note that when we use only one harmonic in the optimum

phase detector, we may still use all the available harmonics to demodulate the subcarrier.
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Fig. 2. Comparison in loop SNR using the optimum
phase detector and the current BTD.

Degradations due to a finite-harmonic subcarrier loop can be computed using the expressions given in

[2]. Degradations as a function of the number of harmonics are shown in Fig. 3. Clearly, we can observe

that, using the optimum phase detector, we obtained a lower degradation with more harmonics. This

agrees with our intuition.

With the increase of the loop SNR, that is, with the increase of the number of harmonics, the linear

region shrinks. See the normalized S-curves shown in Fig. 4. As the number of harmonics approaches

infinity, the linear region of the S-curve approaches zero. In other words, this optimum phase detector is

only for a finite number of harmonics.

III. Optimum Combining Weights in Demodulation

The demodulated harmonics are currently combined with the weight 1/n for the nth harmonic. These

weights are optimum if each of the harmonics of the subcarrier is demodulated with the same phase jitter.
In our case, however, we know that if the first harmonic has a phase jitter with a variance of a2, then

the nth harmonic would have a variance of (na) 2. The weight 1/n is no longer optimum.
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Fig. 4. Normalized S-curves.

To derive the optinmm combining weights, we assume that the harmonics are combined using unknown
weights b_. We then express the SNR in terms of the weights. Differentiating the SNR with respect to
the weights and setting it to zero, we should obtain the optimum weights.

The optimum weight to combine the demodulated (2n + 1)th harmonics is derived in the Appendix as

b_ = cos[(2n + 1)¢sc] 1 (3)

cos ¢_c 2n + 1

When Csc is assumed to have a Tikhonov distribution,

cos(2n + 1)¢sc = ] exp[(1/4)p,ccosCsc]
zrlo(Psc/4)

o

Assuming that we have 4, 8, and 16 harmonics, the degradations in symbol SNR versus the subcarrier
loop SNR, using the optimum weights and the usual 1/n weights, are compared in Figs. 5 through 7.

IV. Approximated Optimum Combining Weights in Demodulation

Since the cosine function is "smooth" in the vicinity of zero, for small phase jitters, nCsc, the expected

value of cos(nCsc) can be approximated by

(72
E{cos(nCsc)} _ 1 - n 2- (4)

2

The approximated optimum weights are
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1 - (2n + 1)2a 2 1
bn _ (5)

1 - _2/2 2n + 1

Note that this approximation is valid only when nest is small. Using the approximated optimum weights

for four harmonics, the symbol SNR degradation is only slightly more than that using the optimum weight

as shown in Fig. 5.
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V. Conclusion

We presented an optimum way of tracking and demodulating a finite-harmonic subcarrier. We found

an optimum phase detector in the sense that the loop SNR is maximized. The more harmonics used, the

higher the loop SNR we obtain. However, the linear region of the phase error signal shrinks with the
increase of the number of harmonics. Therefore, this optimum phase detector is only appropriate for a

finite number of harmonics. Using the optimum phase detector, the loop SNR is about 9.5 dB higher

than that of the current BTD using window size 1, and is about 1 dB higher than that of the current

BTD with window size 1/4.

For demodulation, we found the optimum combining weights that account for the losses due to the

phase jitter. Compared to using the usual 1In combining weights, the use of the optimum combining

weights can improve the symbol SNR by 0.1 to 0.15 dB at a low loop SNR (15 dB) and a high number

of harmonics (8 to 16).
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Appendix

Derivation of the Optimum Combining

Weights in Demodulation

After each of the harmonics of the subcarrier is demodulated, the signals from each harmonic demod-

ulation need to be combined. Assume that the combining weight for the (2n + 1)th harmonic is b,_; the
signal amplitude at the/th symbol is

L-1 1
(A-l)

where Pd is the data power, and ¢c and Csc are the phase offsets of the carrier and subcarrier, respectively.
The noise variance is

L-1

n=0

Taking the ratio of the average signal power and the noise variance, we have the average symbol SNR of

the combined signal:

SNR
2_ 2

L-1
E{(4y)Pd cos_¢c(_=0 b. cos[(2n + 1)¢_c]/(2n + 1))2}

(A-3)

Differentiating the symbol SNR with respect to bk, k = 0,.. •, L - 1, we have

O(SNR)

Obk [ L-1 COS[(2n + 1)¢_c] cos[(2k + 1)¢_]PdCOS2L-1¢¢(4/7r2) $ 2 _ bn(_-_,_=o b_NoR_um) 2 2n + 1 2k + 1

2

2bk 0R  m}

L-1

b,_NoR_gm
n=l

=0 (A-4)

Simplifying the above equation, we have
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Let k = 0 and b0 = 1; we have

That is,

L-1 L-, b cos[(2n+ I)¢8c]= 0
cosCsc _-_ b_ - _--_n 2--n+ 1

n=0 n_0

L-, [ cos[(2n + 1)¢sc]bn cos Cscb,_ - 2n + 1
rim0

Finally, solving for b=, we have the optimum combining weights,

b_ = cos[(2n + 1)¢sc] 1
cos Csc 2n + 1

=0

(A-6)

(A-7)

(A-8)
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The Galileo low-gain antenna mission will be supported by a coding system that

uses a (14,1/4) inner convolutional code concatenated with Reed-Solomon codes

of four different redundancies. Decoding for this code is designed to proceed in

four distinct stages of Viterbi decoding followed by Reed-Solomon decoding. In

each successive stage, the Reed-Solomon decoder only tries to decode the highest

redundancy codewords not yet decoded in previous stages, and the Viterbi decoder

redecodes its data utilizing the known symbols from previously decoded Reed-
Solomon codewords.

A previous article [1] analyzed a two-stage decoding option that was not selected

by Galileo. The present article analyzes the four-stage decoding scheme and derives

the near-optimum set of redundancies selected for use by Galileo. The performance

improvements relative to one- and two-stage decoding systems are evaluated.

I. Introduction

This article is a follow-on to [1], which analyzed two enhanced decoding options planned for the Galileo

low-gain antenna (LGA) mission: Reed-Solomon redecoding using erasure declarations and Viterbi re-

decoding using Reed-Solomon corrected symbols. The analysis in [1] produced tables of gains achievable
from enhanced decoding under an assumption of infinite interleaving for one, two, or four stages of Viterbi

decoding, but no Reed Solomon redecoding, and for one or two stages of Viterbi decoding, with or with-

out Reed-Solomon redecoding, under the actual Galileo conditions of depth-8 interleaving. The present
article looks at the case of four stages of Viterbi decoding and depth-8 interleaving. The four-stage coding
system has been selected for implementation to support the Galileo LGA mission.

II. Block Diagram of Coding Options

A block diagram of the various coding options is shown in Fig. l. A Reed Solomon encoded data

block is interleaved to depth 8 and then encoded by the (14,1/4) convolutional encoder. The Reed-

Solomon codewords can have four different levels of redundancies, as depicted by the lightly shaded

areas at the bottom of the code block in Fig. 1. The encoded data are modulated, passed over an ad-
ditive white Gaussian noise (AWGN) channel, demodulated, and presented to a Viterbi decoder. After
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Fig. 1. Coding options.

deinterleaving, the codeword or set of codewords with the highest redundancy is decoded by the Reed-

Solomon decoder. The symbols in the codeword(s) decoded by the Reed-Solomon decoder are fed back

to assist the Viterbi decoder in redecoding the symbols in weaker codewords. The output of the Viterbi

redecoder is deinterleaved, and the set of codewords with the next highest redundancy is then decoded

by the Reed-Solomon decoder. The newly decoded symbols are fed back to further assist the Viterbi

redecoder, and the process is repeated for two more decoding stages until the codewords in all four

redundancy classes are successfully decoded.

Figure 1 also shows an option for a shorter feedback loop entirely within the Reed-Solomon decoder

using erasure declarations. As shown in [1], Reed-Solomon redecoding using erasure declarations based

on error forecasting was worth around 0.19 dB when used in conjunction with one-stage decoding of

the Galileo LGA convolutional code. However, the extra gain from using erasure declarations shrinks

to a minuscule 0.02 dB when combined with two-stage Viterbi decoding. For four-stage decoding, the

marginal improvements gained from erasure declarations are almost nil. Therefore, in the present article,

Reed-Solomon redecoding using erasure declarations has not been considered in analyzing four-stage

decoding performance. However, the Galileo LGA coding system will still incorporate the capability to

perform this type of redecoding, as it may prove helpful in overcoming decoding difficulties not caused

by AWGN, such as closing data gaps caused by unsynchronized symbols.

III. The Simulation Data

Figures 2 through 5 are improved and expanded versions of Figs. 1 through 4 of [1], obtained by

accumulating many more millions and billions of simulated decoded bits during the interim. Figure 2

shows the bit error rate (BER) and symbol error rate (SER) (for 8-bit Reed-Solomon symbols) for con-

volutionally encoded symbols decoded by either the Big Viterbi Decoder (BVD) or a software (S/W)

Viterbi decoder. The software decoding algorithm is a close approximation to the software decoder that

is actually being designed to support the Galileo LGA mission. Figure 3 shows the decoded symbol error
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rate for a Reed-Solomon decoder receiving convolutionaUy decoded bits from the BVD; the x-axis of

Fig. 3 is the convolutional code signal-to-noise ratio (SNR) Eb/No. Figure 4 shows the decoder symbol

error rate for the software Viterbi decoder presented with known symbols repeating once every eight, four,

or two symbols; as discussed in [1], these SERs depend on the phase of the decoded symbols relative to

the locations of the known symbols. The baseline SER curves from Fig. 2 for no known symbols are also

included in this figure for reference. Figure 5 repeats the infinite interleaving performance curves from

Fig. 3 and overlays curves representing Reed-Solomon decoded SER when the codewords are interleaved to

depth 8. As in Fig. 3, the Reed-Solomon decoder for Fig. 5 receives its symbols from the output of the

BVD, and the x-axis measures the signal-to-noise ratio at the output of the BVD, not the overall signal-

to-noise ratio at the output of the concatenated Reed-Solomon and convolutional codes. SER estimates

in Figs. 2 through 5 were taken at spacings of 0.05 or 0.10 dB, and each estimate was based on about

2 Gbits of decoded data from the BVD or 25 to 100 Mbits of data from the software decoder.

As is evident from Figs. 2 and 4, the software decoder performs a few hundredths of a dB better

than the BVD (due to a longer truncation length and other factors). The analysis of four-stage decoding

requires the use of both Figs. 4 and 5; proper calibration is important between the software-decoder-

based curves in Fig. 4 and BVD-based curves in Figure 5. In [1], no distinction was made between the

performance of the two decoders, because the software decoder at that time resembled the BVD more

closely than the ultimate Galileo LGA decoder. From Fig. 4 is deduced a table of SER-equivalent Eb/No

operating points for the BVD operating with no known symbols. Whenever the software decoder is

decoding data at a value of Eb/No in the leftmost column of Table 1, the BVD achieves the same average

SER at the "equivalent" Eb/No in the columns to the right. There is one BVD-equivalent Eb/No column

for each of the software-decoder-based curves in Fig. 4. For the case of no known symbols, this really

is a near equivalence, and the decoded bit errors from the software decoder and the BVD have very

similar burst statistics, not just average SER. For the various cases of known symbols presented to the

software decoder, this equivalence is only in terms of average SER. As noted in [1], the error bursts from

a decoder presented with known symbols are more benign than those for a decoder operating at the same

average SER without any known symbols, as measured by their effects on Reed-Solomon decoding with

finite interleaving. Thus, use of the BVD-equivalent signal-to-noise ratios in Table 1 will give slightly

conservative predictions of performance in decoding stages 2 through 4.

Table 1. BVD-equivalent signal-to-noise ratios Eb/No, dB.

Known symbol phase/spacing input to software decoder
Software
decoder

Eb/No, dB None 4/8 3/8 2/8 1/8 2/4 1/4 1/2

-0.15 -- 0.16 0.18 0.24 0.39 0.54 0.62 1.20

-0.10 -0.06 0.20 0.22 0.28 0.43 0.57 0.65 1.22

-0.05 -0.01 0.23 0.25 0.32 0.46 0.61 0.69 1.25

0.00 0.04 0.27 0.29 0.36 0.50 0.64 0.72 1.28

0.05 0.09 0.31 0.33 0.39 0.54 0.67 0.75 1.30

0.10 0.14 0.35 0.37 0.43 0.58 0.70 0.78 1.33

0.15 0.18 0.38 0.41 0.47 0.61 0.74 0.82 1.36

0.20 0.23 0.43 0.45 0.51 0.66 0.77 0.85 1.39

0.30 0.33 0.51 0.53 0.59 0.74 0.84 0.92 1.44

0.40 0.43 0.59 0.61 0.67 0.82 0.91 0.99 --

0.50 0.53 0.67 0.69 0.75 0.90 0.98 1.06 --

0.60 0.62 0.75 0.77 0.82 0.97 1.04 1.13 --
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IV. The Basic Analysis Procedure

As noted in [1], even 2 Gbits of BVD-decoded data are insufficient to directly verify Reed-Solomon

decoded SERs around 10 -7 for the case of depth-8 interleaving. Instead, such performance must be

inferred by extrapolating the simulated depth-8 curves along the accurately known family of curves for

infinite interleaving. Each curve for depth-8 interleaving becomes nearly parallel to a member of the

family of infinite interleaving curves, and 10 -7 performance for depth-8 interleaving may be inferred by
extrapolating along an "equivalent" infinite interleaving curve.

The selection and analysis of an appropriate set of codeword redundancies for four-stage decoding is
illustrated in the following example. First, select a desired Eb/No operating point for the inner convo-

lutional code using the software decoder. This choice is somewhat arbitrary, because the same analysis

must be repeated for several values of Eb/No in order to determine the optimum operating point. For
this example, a convolutional code signal-to-noise ratio Eb/No of 0.00 dB will be used. From Table 1, the

average SER from the first stage of Viterbi decoding by the software decoder is the same as the average
SER produced by the BVD at the BVD-equivalent operating point of 0.04 dB. The output SER from the

first Reed-Solomon decoder stage is obtained from the BVD's performance curve in Fig. 5. If the target
SER is around 2 x 10 -7 (target BER around 1 × 10-7), the highest redundancy codewords must yield an

output SER on the order of 10 -7 without any help from succeeding decoding stages. From Fig. 5, this

can be accomplished at a BVD-equivalent signal-to-noise ratio Eb/No of 0.04 dB by using a codeword

with correction capability E of approximately 47. From Table 1, the average SER from the second stage
of Viterbi decoding with one known symbol every eight is the same as the average SER produced by the

BVD with no known symbols at the BVD-equivalent operating points of 0.50, 0.36, 0.29, and 0.27 dB,

for codewords with symbols at phases +1, ±2, ±3, and ±4, respectively, from the known symbol. From
Fig. 5, codewords with E _ 20, 26, 29, and 30, respectively, can achieve SERs just under 10 -7 for these

four phases. Looking ahead to the next stage of Viterbi decoding, it can be shown that the biggest payoff

comes from locating the second highest redundancy codeword at phase ±4. Then the third stage of

Viterbi decoding is accomplished with one known symbol every four, and the BVD-equivalent operating

points from Table 1 are 0.72 and 0.64 dB for phases +1 and ±2, respectively. These require codewords
with E _ 13 and 15, respectively, and again it can be shown that the out-of-phase location ±2 makes the

best utilization of the fourth and final Viterbi decoding stage. With two of these third highest redundancy

codewords per block of eight placed at phases ±2, the final Viterbi decoding operation is accomplished
with one known symbol every two, and from Table 1, the BVD-equivalent operating point for the unknown

symbols at phase ±1 is 1.28 dB, requiring four lowest-redundancy codewords with E _ 5. This selection

process yields a redundancy profile 2E ,._ (94, 10, 30, 10, 60, 10, 30, 10); this incurs a redundancy overhead
cost of 0.58 dB, and the resulting concatenated code signal-to-noise ratio Eb/No is 0.58 dB. The overall

average SER achieved by four-stage decoding using this redundancy set can be computed approximately
by the formula given in [1], SER = SERe(l) + 7/8 SERb(2) + 3/4 SERc(3) + 1/2 SERd(4), where
the indices a, b, c, and d refer to the strongest, next strongest, third strongest, and weakest codewords and

(n) refers to decoding during stage n, n = 1, 2, 3, 4. Extrapolations from Fig. 5 for SERa(1), SERb(2),
SERc(3), and SERd(4) yield an overall SER of approximately 2 × 10 -7.

Similar analyses starting with convolutional code operating points different from 0.00 dB yield differ-

ent sets of optimal redundancies and different concatenated code Eb/No. It can be shown empirically

that the optimum convolutional code operating point for four-stage decoding occurs within a range from
approximately -0.10 to +0.05 dB, and that essentially identical performance (within one or two hun-

dredths of a dB) is achievable by suitably selecting different redundancy sets within this range. Also, the

best pattern of codeword redundancies always appears to be (a, d,c,d, b, d, c, d), where a is the highest

redundancy, b the next highest, c the third highest, and d the lowest. This is the same pattern suggested
by an earlier analysis of four-stage decoding in [2].
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V. A More Refined Analysis Procedure

The analysis above may be refined by further studying the relationship between the performance curves

for depth-8 interleaving and the "equivalent" infinite interleaving curves along which depth-8 SERs on

the order of 10 -7 are extrapolated. Table 2 and Fig. 6 attempt to quantify this equivalence.

Table 2. Equivalent error correction needed for infinite Interleaving to yield the same SER.

Error correction for depth-8 interleaving
BVD

Eb/No,

dB E=4 E=5 E=6 E=10 E=14 E=16 E=18 E=30 E=32 E=34 E=44 E=48 E=50

-- -- 29.16 30.82 32.46 40.60 43.77 45.18
-0. I0 .....

__ -- -- 28.70 30.34 31.98 40.07 43.44 --
-0.05 ....

-- -- 28.26 29.89 31.50 39.90 -- --
0.00 .....

-- -- 27.86 29.45 31.08 -- -- --
0.05 .....

__ -- -- 27,51 29.10 ....
0.10 ....

-- 13.78 15.52 17.24 27.25 29.15 ....0.15 -- -- --

-- 13.57 15.30 17.02 .....0.20 -- -- --

-- 9.73 13.23 14.94 16.63 .....0.30 -- --

-- 9.52 12.99 14.74 16.34 .....0.40 -- --

0.50 3.96 4.89 5.80 9,36 12.86 14.49 ....

0.60 3.88 4.82 5.72 9.31 .....

0.70 3.82 4.73 5.64 9.17 .....

0.80 3.81 4.73 5.63 ....

0.90 3.81 4.70 5.64 ....

1.00 3.84 4.67 5.59 .....

1.10 3.79 4.76 ....

Table 2 shows, for each Reed-Solomon code tested at depth-8 interleaving, the equivalent error correc-

tion capability needed to achieve the same SER if the interleaving were ideal. At each value of Eb/No, the

equivalent error correction is obtained by linear interpolation on the log scale between the two adjacent

infinite interleaving curves. It is quoted as a real number, not an integer, and thus does not represent a

realizable code. For example, from Fig. 5 at 0.5 dB, the E = 16 curve for depth-8 achieves an SER about

halfway between the infinite interleaving curves for E = 14 and E = 15. The corresponding equivalent

error correction capability is listed in Table 2 as E = 14.49.

Figure 6 plots a normalized version of the numbers in Table 2. Each point in Table 2 is plotted with an

x-coordinate equal to the depth-8 SER at the given value of Eb/No and a y-coordinate equal to the ratio

of the actual depth-8 error correction capability to the equivalent infinite interleaving error-correction

capability listed in Table 2. This ratio is referred to as the depth-8 error magnification factor. For

purposes of computing Reed-Solomon code performance, the (nonindependent) symbol errors occurring

in depth-8 interleaved codewords are effectively multiplied by the error magnification factor, as compared

to an equal average number of independent symbol errors. The error magnification factor is a way of

measuring the propensity for one long Viterbi decoder error burst to contribute more than one symbol

error to a given Reed-Solomon codeword whenever the codewords are only finitely interleaved.

A more mechanized approach than visually extrapolating the depth-8 performance curves in Fig. 5 uti-

lizes the error magnification factors presented in Fig. 6. The first step is to solve for the redundancies that
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Fig. 6. Effective error magnification factors for Reed-Solomon decoding with depth-8
interleaving, as compared to Reed-Solomon decoding with infinite interleaving.

would be needed if the interleaving were ideal. For this solution, fractional redundancies and fractional

error correction capabilities are permissible, and these can be obtained very accurately by interpolation

between successive ideal interleaving curves. At each convolutional code operating point, the goal is to

solve for a roughly "balanced" set of four redundancies, a, b, c, d, used in the pattern (a, d, c, d, b, d, c, d).

A balanced set of redundancies is one for which each class of codewords contributes roughly equally to

the overall SER. If the redundancies were not roughly balanced, essentially the same performance could

be achieved at lower cost by reducing the redundancy of a codeword class that contributes only a tiny
portion of the overall SER.

After a balanced set of fractional redundancies for ideal interleaving is obtained, the next step is

to scale these upward by the error magnification factors for depth-8 interleaving and then round these

numbers to the nearest or next higher even-integer 2E. The integer roundoff causes some loss of balance

and could cause worse performance if all the roundoffs were downward, hence the rationale for generally

rounding upward. Finally, the slightly unbalanced performance of the rounded set of redundancies can be

computed for depth-8 interleaving by again applying the magnification factors to obtain the equivalent

ideal interleaving fractional redundancies and then interpolating between ideal interleaving curves at
adjacent even-integer redundancies.

Figure 6 shows that for testable SERs between 10 -2 and 10 -5, the depth-8 error magnification factor

stays within a small range less than 1.11. The error magnification factor increases with decreasing SER

but at a decreasing rate. In all cases plotted, it appears to be leveling off by the tinm it reaches an SER of

10-5; it is not unreasonable to presume that this leveling off will continue through the untestable values

of SER around 10 -r. The error magnification factors also increase with increasing codeword redundancy

2E, but appear to increase very slowly for E above 10. Nominal depth-8 error magnification factors for

the target SER around 10 -7 have been inferred by extrapolating the family of curves in Fig. 6. The
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values used for this analysis are 1.13 for E = 48 4- 6, 1.125 for E = 32 4- 4, 1.12 for E = 16 -i- 2, 1.105 for

E=104-1, and 1.09 forE=5+1.

Table 3 shows the results of this refined analysis procedure for four-stage decoding. At various can-

didate design point values of Eb/No for the software Viterbi decoder, a balanced set of fractional re-
dundancies is obtained to yield an overall SER of 2 × 10 -7 with ideal interleaving. The nominal error

magnification factors for depth-8 interleaving are applied to the redundancies for ideal interleaving, and

the resulting depth-8 redundancies are rounded to even integers. The corresponding SER is computed
from the curves for infinite interleaving, again using the nominal error magnification factors. The overall

signal-to-noise ratio for the concatenated code is then computed by adding the overhead imposed by the

selected redundancies.

Table 3. Design values of redundanciesfor various possible operating points of the S/W Viterbi
decoder, with redundancies a, b, c, d repeatedaccording to pattern (a, d_ c, d, b, d, c, d).

Design

s/w
decoder

operating
point"

Resulting Balanced redundancies Assumed error Design redundancies

concatenated for ideal magnification factors for for depth-8 Resulting

code interleaving depth-8 interleaving interleaving SER

Eb/No,
dB a b c d Ms Mb Me Ma a b c d

-0.10 0.58 98.52 61.53 30.67 9.79 1.13 1.125 1.12 1.09 110 70 34 12 1.9 × 10 -7

-0.05 0.58 90.74 57.71 28.91 9.33 1.13 1.125 1.12 1.09 104 66 32 10 1.8 x 10 -7

0.00 0.58 83.14 53.96 27.02 8.88 1.13 1.125 1.12 1.09 94 60 30 10 2.1 x 10 -7

0.05 0.59 76.27 49.89 25.89 8.57 1.13 1.125 1.12 1.09 86 56 28 10 2.3 x 10 -7

* Convolutional code Eb/No, dB.

Note that essentially identical concatenated code design points just under 0.60 dB are obtained over

a range of convolutional code design points from -0.10 to +0.05 dB, each using a custom-designed set of

optimum redundancies. The set of redundancies listed in Table 3 for a convolutional code design point
of 0.00 dB is the same as those discussed in the earlier example. There are many sets of "optimum"

redundancies that achieve essentially the same performance. Table 4 lists 24 different redundancy sets

that all produce an average SER of 2 x 10 -7 at a concatenated code signal-to-noise ratio of 0.58 dB.

As in [1], the recommendation in this article is to select the optimum redundancy set with the least

spread in redundancies and the highest convolutional code operating point. This set is the one listed in
Table 3 for a convolutional code design point of 0.00 dB, with redundancy pattern (a, d, c, d, b, d, c, d) =

(94, 10, 30, 10, 60, 10, 30, 10).

The foregoing procedure for selecting a set of redundancies has the advantage of allowing a major part
of the analysis to take place without any assumptions about how to extrapolate the depth-8 SER perfor-
mance data to the 10 -7 range. This makes it possible to isolate and somewhat quantify the inaccuracies

that might result from extrapolation. One might design a conservative set of redundancies for depth-8

interleaving by applying an extra-conservative set of magnification factors. This would require an easily
calculable increase in the concatenated code signal-to-noise ratio. At concatenated code operating points

just under 0.60 dB, an increase of all magnification factors by 0.05 above the nominal magnification

factors costs just 0.03 dB in added overhead; an underestimate this large seems unlikely, as it would put
three of the magnification factors above the top edge of the graph in Fig. 6. Designing for the adverse

magnification factors would correspond to using a, b, c, d = 98, 64, 32, 10, instead of the nominal design,
a, b, c, d = 94, 60, 30, 10, listed in Table 3 for a convolutional code design point of 0.00 dB. Conversely,

once a set of depth-8 redundancies has been selected, the sensitivity of the predicted SER to the extrapo-

lation assumptions could be tested by varying the assumed magnification factors for the final performance
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Table 4. Various optimal redundancy sets a_ b_ c, d, repeated according to
the pattern (at d_ c, d, b_ d, c, d), that achieve SER _- 2 × 10 -7 at a con-
cetenated code signal-to-noise ratio of 0.58 dB.*

Codeword redundancies Signal-to-noise ratios, dB

a b c d Concatenated Convolutional
SER

94 60 30 10 0.58 0.00 2.0 × 10 -7

94 62 30 10 0.58 -0.00 2.0 x 10 -7

96 60 30 10 0.58 -0.00 2.0 x 10 -7

96 62 30 10 0.58 -0.00 2.0 × 10 -7

102 64 32 10 0.58 -0.03 2.0 × 10 -7

102 64 34 10 0.58 -0.04 2.0 × 10 -7

102 66 32 10 0.58 -0.04 2.0 × 10 -7

102 66 34 10 0.58 -0.05 2.0 × 10 -7

102 68 32 10 0.58 -0.05 2.0 × 10 -7

102 68 34 10 0.58 -0.05 2.0 × 10 -7

102 70 32 10 0.58 -0.05 2.0 × 10 -7

104 64 32 10 0.58 -0.04 2.0 x 10 -7

104 64 34 10 0.58 -0.05 2.0 x 10 -7

104 66 32 10 0.58 -0.05 2.0 × 10 -7

104 66 34 10 0.58 -0.05 2.0 × 10 -7

104 68 32 10 0.58 -0.05 2.0 × 10 -7

104 70 32 10 0,58 -0.05 2.0 x 10 -7

106 64 32 10 0.58 -0.04 2.0 × 10 -7

106 64 34 10 0.58 -0.05 2.0 x 10 -7

106 66 32 10 0.58 -0.05 2.0 × 10 -7

106 66 34 l0 0.58 -0.06 2.0 × 10 -7

106 68 32 10 0.58 -0.05 2.0 × 10 -7

108 64 32 10 0.58 -0.05 2.0 × 10 -7

108 66 32 10 0.58 -0.05 2.0 × 10 -7

* The first listed redundancy set was chosen to support the Galileo LGA
mission.

evaluation over a range of reasonable values. For example, it can be shown that the required operating

point of the code nominally designed for 0.00 dB would increase to 0.04 dB if all the error magnification

factors were increased by 0.05 above the nominal factors. Thus, the design mismatch only costs an

additional 0.01 dB above the 0.03 dB that would accrue if the adverse magnification factors could be

anticipated. Because of this relative insensitivity of the code's performance to the exact design parameters,

the nominal design was recommended and is being implemented for the Galileo LGA mission.

VI. Four-Stage Redecoding Dynamics: An Example

Figure 7 depicts an example of how the four-stage redecoding process works. The block of eight Reed-

Solomon codewords, with error correction capabilities (47, 5, 15, 5, 30, 5, 15, 5), is shown in five snap-

shots. The first snapshot depicts the bursts of errors emanating from the first-stage of Viterbi decoding

before any Reed-Solomon decoding. The 8-bit symbol errors output from the Viterbi decoder are repre-

sented by the black left-to-right traces. Correctly decoded symbols occupy the gray regions of the code
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Fig. 7. Illustration of four-stage redecoding dynamics for a sample code block.

block. Shown at the top of the block are the symbol error counts in the individual codewords. These range

from 36 to 47, making all the codewords undecodable except for the one with the highest redundancy.

The second snapshot shows the code block after the first codeword is corrected by the first-stage of Reed-

Solomon decoding. The corrected codeword, depicted in white, now has zero errors and is fed back to

assist the second stage of Viterbi decoding. The output of the Viterbi redecoder is improved by the known

106



symbols from the one known codeword, and the resulting error bursts are thinned out and shortened,

as shown in the second snapshot. Now the codeword with correction capability 30 is barely decodable
despite 28 errors, so this codeword has zero errors in the third snapshot. With only three unknown

symbols between pairs of known symbols, the output from the third-stage Viterbi redecoder is improved
to the point where both codewords with correction capability 15 can be decoded by the Reed-Solomon

decoder. Finally, in the fourth snapshot, with four known symbols out of every eight, the fourth-stage

Viterbi redecoder output sports only occasional isolated symbol errors, which are easily corrected by the
final stage of Reed-Solomon decoding despite the low correction capability of the fourth-stage codewords.

This example was obtained from simulated data that were intentionally run at several tenths of a dB

below the threshold Eb/No required to achieve a BER of 10 -7, because, at the design threshold, the

Viterbi (re)decoder error bursts would have been sparse enough to make the illustration unenlightening.

The choice of a below-threshold operating point also demonstrates another facet of the four-stage decoding

process. As seen in the first two snapshots, at this low Eb/No, the first two codewords are very lucky
to be decodable; in fact, some neighboring codewords have error counts equaling or exceeding the error

correction capabilities of the first- and second-stage codewords. This emphasizes that the performance

of the high-redundancy codes breaks down very rapidly as Eb/No is reduced below the design threshold,

whereas the lower redundancy codes used in the third and fourth stages are relatively unaffected by a
few tenths of a dB reduction.

VII. A Caveat: Undetected Errors

Throughout this analysis and that of [1J, it has been assumed that Reed-Solomon codewords are

always either correctable or undecodable. The possibility of undetected Reed-Solomon errors has not been

considered. This has traditionally been a safe assumption for codes with large correction capabilities E,

because from [3] the undetected error rate is bounded by (1/El) times the detected error rate. However,
for the fourth-stage codewords with E = 5, the undetected error rate can be up to 10 -2 times the detected

error rate, and so the possibility of undetected errors cannot be ignored.

Undetected errors in the four weakest codewords do pose a real threat if any attempt is made to

decode these words before the reliability of the Viterbi redecoder output is strengthened by having every
other symbol known, as shown in the next-to-last snapshot in Fig. 7. Conversely, however, if the weakest

codewords are always decoded subsequent to the final stage of Viterbi redecoding based on known symbols

from all of the four stronger codewords, both detected and undetected errors are so rare that they do

not breach the overall BER requirement of 10 -7. If Eb/No is reduced to the point where this assumption

is no longer valid, the stronger codewords become undecodable first, and the fourth stage of decoding is
never reached.

The following caveat suggests a very safe, conservative decoding algorithm that always utilizes exactly
four stages as described in this article: "Decode no word before its time." Such a decoder takes four

times as long to decode as a corresponding one-stage decoder. However, this extreme conservatism

is unnecessary because the four codewords with correctabilities 47, 15, 30, and 15 do in fact detect

their errors almost always. Therefore, it is safe to allow these codewords to be decoded as early as

possible, regardless of whether the corresponding Viterbi (re)decoder output has been cleaned up by
the successful decoding of stronger codewords in previous stages. The important caveat is that the four
weakest codewords should never be decoded until the Viterbi redecoder utilizes information from all four

of the stronger codewords. As long as this restriction is honored, there will be essentially no change in

the overall output BER. Yet the modified algorithm can allow for a probabilistic speedup in decoding
time, sometimes requiring four stages, three stages, or two stages, but never one stage.

VIII. Summary of Performance Results

Table 5 summarizes the performance results discussed above for four-stage decoding and compares
them to previous results for one- and two-stage decoding. For a fair comparison, the one- and two-stage
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SERs are recalculated here using the new software decoder calibration curves and the same assumed error

magnification factors for depth-8 interleaving. The required signal-to-noise ratios for one- and two-stage
decoding are lower than the values quoted in [1] by 0.03 and 0.01 dB, respectively.

Table5. Performancecomparisons for depth-8 interleaving at SER -_ 2 X 10 -7,
assuming no Reed-Solomon redecoding using erasure declarations.

Decoding stages

Codeword redundancies

Convolutiona[ code Eb/No

Concatenated code Eb/No

(32,32,32,32,32,32,32,32) (66,20,22,20,66,20,22,20) (94,10,30,10,60,10,30,10)

0.56 dB 0.19 dB 0.00 dB

1.14 dB 0.77 dB 0.58 dB

The results in Table 5 do not include any effects from utilizing Reed-Solomon erasure declarations.

As noted earlier, the performance improvement at an SER of 2 × 10 -7 for a Reed-Solomon decoder

that makes use of erasure declarations is roughly 0.19 dB for one-stage decoding, 0.02 dB for two-stage

decoding, and 0.00 dB for four-stage decoding.

Two-stage decoding without erasure declarations is worth 0.37 dB relative to a baseline of one-stage

decoding without erasure declarations. Adding erasure declarations gains another 0.02 dB for a total

improvement of 0.39 dB. Four-stage decoding, with or without erasure declarations, gains 0.56 dB relative
to the baseline and 0.17 or 0.19 dB relative to two-stage decoding with or without erasure declarations,

respectively.

Uncertainties in the performance estimates stem mostly from the lack of enough data to directly

verify decoded SERs around 10 -7 with depth-8 interleaving. To first order, errors of this type are likely

to affect performance predictions for one-, two-, and four-stage decoding in the same direction; hence,

comparisons are not likely to change much. In absolute terms, the adverse uncertainty in four-stage
decoding performance is likely to be less than 0.04 dB. The favorable uncertainty due to this effect is

slightly smaller, as are the adverse uncertainties for one- and two-stage decoding. As mentioned earlier

and in [1], there is an additional favorable uncertainty of a few hundredths of a dB for the multiple-stage
decoding cases only, due to the technique of substituting "equivalent" BVD data with the same average
SER but less benign burst characteristics, in analyzing the second, third, and fourth decoding stages.

The magnitude of this effect has not been assessed, but it might provide an argument for adding a couple
of extra redundant symbols to the strongest codeword only, in order to maintain a balanced codeword

set if the weaker (redecoded) codewords achieve SERs slightly better than predicted.

As noted earlier, if ED/No drops below the threshold designed to produce a BER of 10 -7, the perfor-

mance of the highest redundancy Reed-Solomon codes falls apart, and the decoding of the interleaved

code block never gets started. The overall BER increases dramatically according to the steep slope of the

high-redundancy code performance curves. Conversely, if Eb/No is increased above the design threshold,
further reduction in overall BER below 10 -7 is hampered by the flatter slope of the performance curve for

the four weakest codewords. Figure 8 shows the unusual performance curve that characterizes the four-

stage Galileo LGA decoding system. Also shown for comparison are performance curves for tile two-stage

system analyzed in [1] and the standard one-stage concatenated system with a constant redundancy-32
Reed-Solomon code and no Viterbi redecoding. For four-stage decoding, the error rate falls off very

steeply as Eb/No is increased toward the design threshold; in this region, performance is dominated by
that of the highest-redundancy code(s). Upon reaching the design threshold, the performance curve flat-

tens out; here the dominant error contribution comes from the weakest codewords. The lesson learned

from considering the entire four-stage performance curve is that you get exactly what you ask for: a very

steep descent reaching the required error rate at a minimum expenditure of Eb/No, but slow improvement
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depth-8 interleaving and near-optimum redundancies.

beyond the requirement if further Eb/N o is supplied. The same effect is evident but less noticeable for

two-stage decoding. For one-stage decoding, the performance curve takes the traditional convex shape.

The four-stage performance curve plunges most rapidly to the required SER level, reaching that point

0.56 dB more cheaply than one-stage decoding and 0.17 dB more cheaply than two-stage decoding. On

this basis, the Galileo project selected four-stage decoding as the system for maximizing the possible data
return.
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One of the inherent problems in testing the feedback concatenated decoder

(FCD) at our operating symbol signal-to-noise ratio (SSNR) is that the bit-error
rate is so low that we cannot measure it directly through simulations in a reason-

able time period. This article proposes a test procedure that will give a reasonable

estimate of the expected losses even though the number of frames tested is much
smaller than needed for a direct measurement. This test procedure provides an

organized robust methodology for extrapolating small amounts of test data to give
reasonable estimates of FCD loss increments at unmeasurable minuscule error rates.

Using this test procedure, we have run some preliminary tests on the FCD to

quantify the losses due to the fact that the input signal contains multiplicative
non-white non-Gaussian noises resulting from the buffered telemetry demodulator

(BTD). Besides the losses in the BTD, we have observed additional loss increments
of 0.3 to 0.4 dB at the output of the FCD for several test cases with loop signal-to-

noise ratios (SNRs) lower than 20 dB. In contrast, these loss increments were less
than 0.1 dB for a test case with the subcarrier loop SNR at about 28 dB. This test

procedure can be applied to more extensive test data to determine thresholds on

the loop SNRs above which the FCD will not suffer substantial loss increments.

I. Introduction

Thus far, the feedback concatenated decoder (FCD) has only been tested with signals corrupted by

pure additive white Gaussian noise (AWGN). In reality, the FCD takes input from the output of a receiver,
such as the buffered telemetry demodulator (BTD), which contains multiplicative non-Gaussian noise.

The FCD is composed of a Viterbi decoder (VD) and a Reed-Solomon (RS) decoder, as shown in Fig. 1.
The RS decoder decodes four different types of codewords with different error correction capabilities:

E = 47, 30, 15, 5. In each eight-codeword frame, the single codeword with the highest correctability,
E = 47, is decoded first. This decoded word is passed back to the Viterbi decoder, which redecodes its

data utilizing the new information. Then the RS decoder is able to decode the single codeword with

the next highest correctability, E = 30, and it feeds this word back to the Viterbi decoder for another

redecoding. At the next stage, the two codewords with correctability E = 15 are decoded and finally,
after one more Viterbi redecoding, the RS decoder decodes the final four codewords with correctability

E=5.
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Since the metrics in the Viterbi decoder are designed to be optimum for AWGN, they are not the

optimum metrics for the actual BTD output; hence, there are additional losses in the Viterbi decoder.

Similarly, the predicted performance of the four-stage RS decoder [1] is based on the error burst charac-

teristics of a Viterbi decoder decoding symbols corrupted by pure AWGN and, hence, will be different

for the actual BTD output. There are no analytical techniques for characterizing these losses; therefore,

simulations are used to characterize the additional losses in the FCD due to the nonideal receiver (BTD).

The required error rate at the output of the FCD is extremely low. The required bit error rate (BER)
is 10 -7, which corresponds to an 8-bit RS symbol error rate of 2 × 10 -7 and an RS codeword error rate

of 10 -5 to 10 -6. To directly measure the FCD error rate, we would need to simulate several million

codewords, which would take thousands of days using the current computing systems. In this article,
we propose a test procedure that estimates FCD performance to the 10 -7 level by applying sensitive

extrapolation techniques to measurable hypothetical error rates for weaker RS codes (i.e., codes with
lower correctability) within the same family of codes as the four actual RS codes used in the FCD.

II. Test Setup

We first generated an encoded data stream and modulated it with a suppressed carrier near baseband

and four harmonics of a subcarrier (upper and lower sidebands) also at almost baseband. We then added

white Gaussian noise to the modulated data and used the result as a test signal. Next we ran this test

signal through the BTD, and at the BTD output, we measured the symbol error rate by comparing the

hard symbols to the known test symbols. From this error rate, we computed the corresponding symbol

signal-to-noise ratio (SSNR or E_/No), assuming AWGN. We also made a second SSNR measurement

from the split-symbol signal-to-noise ratio estimator built into the BTD. Finally, we fed the soft symbols
obtained from the BTD to the FCD.

We decided to include the BTD in the test setup instead of modeling the BTD output with symbols

containing multiplicative noises with a Tikhonov distribution. The reason is that the Tikhonov distribu-

tion is an appropriate assumption only for first-order loops, whereas the BTD actually uses second- or

third-order tracking loops whose phase noise distribution is unknown.

We looked at the decoded output of the FCD and discarded any undecodable data before the receiver

was in lock. From the in-lock decoded output, we counted how many 8-bit RS symbols the RS decoder

corrected in each of its four stages of decoding. From the histogram of the numbers of corrected symbols,

we estimated the performance of both the Viterbi decoder and the Reed-Solomon decoder in each decoding

stage, and we used these measurements to estimate additional losses that show up at the output of the

FCD but are not apparent at the output of the BTD. The analysis method for obtaining these estimates
is described in the next section.

The test setup is shown in Fig. 2. This setup consists of a random information-bit generator, a carrier-

subcarrier modulator, an AWCN generator, a receiver (BTD), and a decoder (FCD). The test signal does

not have filtering effects on it; hence, it can be generated at a high speed. The speed is crucial in this

case, since hundreds or thousands of frames need to be generated in a reasonable amount of time.
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The input to the receiver (BTD) is an encoded symbol stream on a suppressed carrier and the first four

harmonics of a square-wave subcarrier at almost baseband. The size of the losses depends on the SSNR

and the parameters of the carrier, subcarrier, and symbol synchronization loops, such as loop bandwidths
and window sizes.

For our tests, we arbitrarily picked six sets of typical receiver parameters as examples, designated as

cases A through F. In the first two cases, the SSNR is chosen to be -5 dB, which is a typical value in

operation slightly above the design threshold where decoder errors are very rare. The loop SNRs are
chosen to be about 20 and 18 dB for cases A and B, respectively. In cases C through F, the input SSNR

is set at -5.5 dB. This is to push the effective bit SNR slightly below the design threshold, where the

decoder may fail to decode. The loop SNRs are varied from about 20 to 16 dB, where below 16 dB the

loops may have cycle slips.

Table 1 summarizes the receiver parameters associated with cases A through F, along with the corre-

sponding estimates of losses at the output of the BTD before any decoding by the FCD. It is seen that

BTD loss increments on the order of 0.3 dB are typical for all test cases except case D, which has a high

subcarrier loop SNR of 28.5 dB and a resulting BTD loss increment under 0.1 dB.

Table 1. FCD test conditions.

Carrier Es/No at Es/No at BTD loss

Case Loop BW, Window Loop SNR, Doppler rate, BTD input, BTD output, increment,
Hz size dB

mHz/s dB dB dB

Carrier 0.10 20.5

A Subcarrier 0.05 1.0 19.3 0.1 -5.22 -5.49 0.27

Symbol 0.02 0.5 16.1

Carrier 0.17 182

B Subcarrier 0.06 1.0 18.6 0.1 -5.22 -5.54 0.32

Symbol 0.01 0.5 18.0

Carrier 0.10 19.7

C Subcarrier 0.05 1.0 18.5 0.0 -5.72 -6.01 0.29

Symbol 0.02 0,5 15.2

Carrier 0.08 20.7

D Subcarrier 0.04 0.25 27.9 0.0 -5.72 -5.79 0.07

Symbol 0.01 0.25 21.6

Carrier 0.10 19.7

E Subcarrier 0.05 1.0 18.5 0.0 -5.72 -5.98 0.26

Symbol 0.01 0.5 18,2

Carrier 0.23 16.1

F Subcarrier 0,05 1.0 18.5 0.0 -5.72 -6.06 0.34

Symbol 0.02 0.5 15.2
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III. Classifying and Measuring the Losses

We classified the losses due to the nonideal receiver into several categories. The first category is the

loss measured at the output of the receiver without any decoding; this is the BTD loss increment reported
in Table 1. Any extra loss beyond the BTD loss increment that is measurable at the output of the full

FCD is referred to as the FCD loss increment. The FCD loss increment is further subclassified into two

types of stage-by-stage losses. The VD loss increment for a given decoding stage is the loss measured

at the output of the Viterbi decoder assuming correct RS decoding in previous stages but without any
Reed-Solomon decoding in succeeding stages; this loss is measured relative to the performance of a stand-

alone Viterbi decoder operating with differing amounts of known information from stage to stage. The

RS loss increment for a given stage is the loss measured at the output of the RS decoder assuming the
observed average error rate from the Viterbi decoder for that stage; this loss is measured relative to the

performance of a Reed-Solomon decoder operating with depth-8 interleaved symbols corrupted by pure
AWGN.

The RS loss increment is referred to the FCD's performance with codewords interleaved to depth 8,

not infinitely interleaved. As reported in [1], there is a 0.06- to 0.07-dB degradation due to finite depth-8

interleaving, but that loss is already accounted for in the FCD's performance baseline with an ideal BTD.

It should be emphasized that all the loss components evaluated in our tests arise from the nonideal

noise originating in the receiver, and the various categories of loss increments estimate the successive
degradations caused by the corrupted symbols as the processing moves further downstream from the

receiver. Ideally, we would like to know the losses in each of the components, so that in the event of a

fault, we can pinpoint where the fault may be. We also want to quantify the losses in smaller components
so that we know where the losses are more significant and may need to be improved in the future.

A. BTD Loss Increment

The symbol SNR (SSNR or Es/No) at the input to the BTD was -5.22 dB for cases A and B, and

-5.72 dB for cases C, D, E, and F. These input SSNRs were achieved by keeping four harmonics from

full-spectrum signals with SSNRs of -5.00 and -5.50 dB, respectively.

The SSNR at the output of the BTD was measured using the split symbol estimator. This estimate

was also corroborated by measuring the hard-limited symbol error rate and looking up the corresponding
SSNR on the standard performance curve for an uncoded AWGN channel. In all six test cases, the two

SSNR estimation techniques gave ahnost identical estimates. The difference between the estimated output
SSNR and the tested input SSNR is what we call the loss in the receiver or the BTD loss increment. Note

that this definition of the BTD loss increment does not include the 0.22 dB lost before the BTD input
due to using only four harmonics.

B. Stage-by-Stage VD Loss Increments

The effective bit SNR (BSNR or Eb/No) at the output of the Viterbi decoder for each decoding stage

was estimated by counting the number of 8-bit Reed-Solomon code symbols corrected by the FCD in

that stage. If it can be assumed that the FCD always decodes the truth data, then the observed sym-

bol correction rate from the FCD equals the Viterbi decoder's output symbol error rate (SER) for 8-bit
Reed-Solomon symbols. This is the output SER for a Viterbi decoder operating in a stand-alone mode

but with different patterns of known symbols from previous RS decoding stages. The measured SER is

mapped to a corresponding effective BSNR using the performance curve for a stand-alone Viterbi de-

coder for Galileo's (14,1/4) convolutional code, given a particular pattern of known 8-bit symbols from
previous RS decoding stages (assumed successful); these Viterbi decoder reference curves were obtained

in [1] and are reproduced here as Fig. 3. The VD loss increment for the given decoding stage is the
difference between this measured effective BSNR and the BSNR computed from the estimated SSNR at
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convolutional code.

the output of the BTD. The values of BSNR used in these calculations are per bit at the output of the
Viterbi decoder, and they do not include the 0.58-dB overhead to account for the average rate of the RS

codewords.

C. Stage-by-Stage RS Loss Increments

The stage-by-stage RS loss increments cannot be measured directly using reasonable amounts of test
data. They are estimated by a complicated method similar to that used in [1] for estimating the losses

due to using depth-8 interleaving instead of infinite interleaving.

The four stages of the FCD are designed to be in "balance" with each other [1]. At the design operating

point where the required error rate of 10 -7 is just barely achieved, all four stages contribute comparable

portions to the overall error rate. If the operating point is at a lower Eb/No than the design point, the

performance of the RS code with the highest correctability, E = 47, deteriorates much more rapidly than

the others, and so the error rate is dominated by errors from the first stage. If the operating point is at a

higher Eb/No than the design point, the code with the lowest correctability, E = 5, improves very slowly
relative to the others, and the error rate is dominated by errors from the fourth stage.

The effects on FCD performance of the non-AWGN introduced by the BTD must be evaluated stage

by stage. If the design balance point is disturbed, the performance degradation will be dominated by
that of the most affected stage.

1. Method for Estimating Losses Due to Depth-8 Interleaving. The analysis in [1] introduced

a technique for estimating stage by stage the performance difference between a hypothetical FCD pro-

cessing infinitely interleaved Reed-Solomon symbols and the actual FCD that must work with symbols
interleaved only to depth 8. Depth-8 performance could be directly simulated only to an overall error
rate of about 10 -5 or 10 -6. Estimates of the design operating point required to produce a 10 -7 error
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rate were obtained by extrapolation. The extrapolation method was to compare the simulated depth-8

data with an entire family of Reed-Solomon performance curves based on infinite interleaving, for all

possible values of the error correction capability E of the code. The infinite-interleaving performance
curves could be accurately calculated to error rates below 10 -7, and the depth-8 performance data were

extrapolated to the 10 -7 level by reference to the family of infinite-interleaving curves. This extrapolation

was accomplished by first calculating "error magnification factors," relating (in the region where depth-8
data existed) the actual Reed-Solomon error correction capability to that of a code that would achieve

the identical output error rate if its input symbols had the same input error rate but were infinitely

interleaved. The error magnification factors were found to vary slowly and smoothly over the range of
depth-8 data, and they could be extrapolated from the 10 -5 level to the 10 -7 level with a high degree of
confidence.

2. Test Method for Estimating Losses Due to the BTD. In the present tests, we are trying to

estimate 10 -7 performance with much less data than was available in [1] for determining the effects of

depth-8 interleaving. However, the basic extrapolation principle is the same. We first measure stage-by-

stage FCD error rates, under the actual conditions introduced by the nonideal BTD, to the lowest error

level that can be feasibly tested (in this case about 10 -3 or 10-4). Then all of the measured data are

converted to equivalent error magnification factors by reference to the entire family of RS performance

curves based on infinite interleaving; these reference curves are shown in Fig. 4. The magnification factors

are extrapolated to the required 10 -7 error level to give an estimate of the total degradation relative to

infinite interleaving. Finally, the degradation due to depth-8 interleaving, already estimated in [1], is
subtracted to give the net degradation due to the nonideal BTD.

The degradation measured in terms of error magnification factors is translated into an equivalent SNR

loss by means of the calibration curves shown in Fig. 5. This figure plots the error magnification factor at

an RS output SER of 10 -7 versus the Viterbi decoder bit SNR that would achieve the same SER according

to the stand-alone first-stage Viterbi decoder reference performance curve in Fig. 3, and assuming infinite

interleaving. It is seen from Fig. 5 that the translation from magnification factors into SNR losses follows

a nearly universal straight-line rule, regardless of the error correction capability E of the outer Reed-

Solomon code. The calibration rule for all values of E greater than or equal to approximately 15 is that

8 dB of error magnification factor equals 1 dB of equivalent SNR loss. For E less than 15, this ratio drops

drops off very gradually, staying above 6 to 1 for all values of E greater than or equal to 2.

A difference between these tests and the simulations in [1] is that for these tests the nonideal error
rates were not directly measured, but instead were estimated without reference to known "truth" data.

These estimates were obtained using histograms of Reed-Solomon symbol corrections reported by the
FCD. A similar method I utilized only average symbol correction rates rather than entire histograms; this

method allows accurate stage-by-stage measurement of the VD loss increment, but does not produce an
estimate of the RS loss increment.

Suppose that a code with error correction capability E actually reports e <:_E corrections for a given

codeword. Then, assuming that this corrected codeword is not erroneous, any Reed-Solomon code with

the same block length and correction capability E' _> e would have corrected a corresponding codeword
with symbol errors in the same e places, whereas codes with correction capability E ' < e would have

failed to decode (or possibly decoded incorrectly). By collecting a histogram of observed values of e for

different decoded codewords, we can simultaneously estimate the RS decoded error rates for a whole

family of codes with error correction capabilities E r _< E. After noting RS output SER as a function
of E', we look up the corresponding ideal error correction capabilities E* that would achieve the same

SER values under an infinite interleaving assumption. This yields the error magnification factors E'/E*

1s. Shambayati, "DGT Bit Error Rate Inference From Reed-Solomon Correction Rate Per Correctable Reed-Solomon
Symbol," JPL Interoffice Memorandum 3393-94-SS02, Rev. A (internal document), Jet Propulsion Laboratory, Pasadena,
California, May 15, 1995.
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as a function of SER. For the purposes of this computation, the equivalent ideal correctabilities E* are

determined as nonintegral values by interpolating between the discrete integer-valued curves in Fig. 4.

The process of measuring error magnification factors as a function of RS output SER must be re-

peated for each of the four stages separately. At each stage, error magnification factors are computed
for hypothetical values of correctability E I less than or equal to the actual correctability of the RS code

used in that stage. For this calculation, data are only collected from the specific codeword(s) designed to
be corrected during that decoding stage. Very small values of E t are discarded if they are less than the

code's block length (255) times the RS input average SER (i.e., the average output 8-bit SER from the

Viterbi decoder), because they would not correspond to useful codes (even hypothetically) at the given

input SER. Values of E t greater than or equal to the maximum number of corrected symbol errors e are
also discarded because, for these values of correctability, there are insufficient data to detect an error rate
greater than zero.

3. Test Results for Estimating the Nonideal BTD Effects. Figures 6 through 11 show, for
cases A through F, the measured RS output SER for hypothetical correctabilities E' in each of the four

decoding stages. The measured SERs for different values of E _ are plotted as small circles at the same

value of Viterbi decoder bit SNR. In the first stage, this is the effective VD BSNR after accounting for

the BTD and VD loss increments. In stages 2 through 4, the horizontal coordinate plotted in Figs. 6

through 11 is an equivalent first-stage VD BSNR computed by looking up the output SER of the Viterbi

redecoder on the first-stage VD performance curve in Fig. 3. Also shown in Figs. 6 through 11 is a family

of reference performance curves assuming infinite interleaving and different values of correctability. The

horizontal coordinate of the reference curves is similarly normalized to an equivalent first-stage BSNR.
The figures show one small circle and one reference curve for each value of E' between the minimum and

maximum values described above (and labeled explicitly in the figures).

Notice that the FCD test points represented by the small circles are generally displaced slightly to
the right of the corresponding reference curves assuming infinite interleaving and AWGN. This same

conclusion holds relative to the slightly degraded set of reference curves reported in [1] for depth-8
interleaving but still assuming ideal AWGN. The RS loss increment in the first stage is the horizontal

displacement of the small circles from the depth-8 reference curves. For stages 2 through 4, this horizontal

displacement represents the sum of the RS and VD loss increments for the given stage minus the VD loss
increment for the first stage.

The RS loss increments that can be observed directly as horizontal displacements in Figs. 6 through 11
are for SERs several orders of magnitude higher than 10 -7 and hypothetical values of correctability much

lower than those of the actual four RS codes used in the FCD. The RS loss increment is extrapolated to

the 10 -_ level by first taking the SERs plotted as small circles and reinterpreting them as equivalent error

magnification factors. The results are shown in Figs. 12 through 15. It is seen that the magnification

factors for the first three stages approach or exceed 1 dB for output SERs in the 10 -3 to 10 -4 range. At

the measured rate of increase of magnification factors between 10 -2 and 10 -4 , it is likely that the error
magnification factors will be around 2 dB, and possibly as high as 3 dB, when the error rate is reduced to

the order of 10 -7 . In the fourth stage, the data are more difficult to extrapolate, but the magnification
factors are somewhat lower than in the other three stages.

Since the error magnification factors are computed relative to an equivalent performance curve under

an infinite interleaving assumption, the computation of the RS loss increment requires an adjustment to

account for the portion of the error magnification that is due to depth-8 interleaving; this was already
predicted and accounted for by the analysis in [1]. Figure 16 shows that the error magnification factors

for depth-8 interleaving (assuming AWGN) are consistently below 0.5 dB and seem to approach 0.5 dB

very reliably at 10 -7 SER for all except the very lowest values of correctability. For small values of
correctability, the extrapolated value of the magnification factor may be 0.1 to 0.2 dB smaller.
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Fig. 16. Reference error magnification factors for depth-8
interleaving.

It should be noted that the reference curves show error magnification factors computed by varying the

channel SNR but keeping the correctability fixed, while the test data curves show magnification factors

computed by varying the hypothetical correctability at a fixed channel SNR for each of cases A through

F. Thus, it is not legitimate to subtract the curves point by point. However, our extrapolation procedure

still provides a good estimate, because the reference curves all cluster together and approach a very robust

extrapolated value almost independent of correctability.

The final adjustment required to obtain the RS loss increment is to convert the error magnification

factors into equivalent SNR losses according to the calibration curves in Fig. 5. This means dividing

the net magnification factor (relative to the depth-8 AWGN reference) by 8 for stages with hypothetical

correctabilities E _ > 15, and by approximately 6 or 7 for stages with lower correctabilities. This results

in estimated RS loss increments up to approximately 0.2 dB for the first three stages except for case D,

and no more than approximately 0.1 dB for the fourth stage of all cases and for all stages of case D.

However, it must be emphasized that these estimates are based on extrapolating some very ragged error

magnification factor test data in Figs. 12 through 15 over three or four orders of magnitude in RS output

SER, and the estimates might easily be off by 1 dB or so in magnification factor units, which is equivalent

to a little more than 0.1 dB in SNR loss.

4. Discussion of the Extrapolation Method. If the error magnification factor extrapolations

in Figs. 12 through 15 seem somewhat mysterious, here is a brief explanation in terms of the more

understandable error rate measurements shown in Figs. 6 through 11. In the latter figures, the small

circles represent hypothetical RS output SERs for codes with smaller correctabilities E' than the actual

code's correctability. The desired but unmeasurable test datum is the small circle that would correspond

to E' = E_, where Ei is the actual codeword correctability in the ith decoding stage. We must try to

estimate where this unmeasurable small circle might lie. The simplest method is to assume that it falls

on the corresponding reference curve for the same value of correctability. The trail of small circles would
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be extended downward in a straight vertical line at the constant value of effective bit SNR shown in

the figures, until the assumed reference curve is intersected. The reference curve may be the infinitely

interleaved performance curve shown in the figures or the corresponding depth-8 performance curve (not

shown). This method of extrapolating to an assumed reference curve precludes the detection of any
deviation or loss relative to the reference.

We notice from Figs. 6 through 11 that the small circles begin to deviate more and more from their

corresponding reference curves as the hypothetical correctability E I increases and the RS output SER

gets smaller. The error magnification factors in Figs. 12 through 15 quantify this increasing deviation

from the reference. By extrapolating along the trend of increasing magnification factors measurable for

small values of E t, we can obtain an estimate of how far above the reference curve the small circle would
be either at the true value of correctability or at the value that yields an error rate around 10 -7. This

produces an estimate of the loss relative to the assumed reference.

IV. Summary of Test Results

The measured VD and RS loss increments for cases A through F are reported in Table 2. The VD

loss increments are mostly between 0.1 and 0.2 dB, except for case D, which has negligibly small VD loss

increments. The RS loss increments estimated in the previous section range up to approximately 0.2 dB,

not allowing for at least 0.1 dB possible error in extrapolating the data to the 10 -7 SER level. The

composite FCD loss increment, obtained roughly as the sum of the VD and RS loss increments for the
most affected stage, is estimated to be approximately 0.3 to 0.4 dB for all cases except case D, for which
the FCD loss increment is less than 0.1 dB. Again, the estimates of the composite FCD loss increment

do not include the numerical uncertainties (positive or negative) in extrapolating the RS loss increments

to the 10 -7 SER level.

Cases C and F produced an effective operating point a few tenths of a dB lower than the design

threshold required for a 10 -7 error rate. As a result, the FCD failed to decode a few frames. In the

previous section, we described our test procedure as if these undecodable frames never existed, and the
numerical results in Table 2 are based on ignoring these frames. In the next section, adjustments are made

to approximately account for the bias introduced by ignoring the undecodable frames. These adjustments

add less than 0.1 dB to the composite FCD loss increment for cases C and F only.

V. Discussion of Test Results

A. Statistical Confidence in the Numerical Results

One of our concerns about the test results is that the measured error magnification factors for these

tests jump around wildly, and, thus, it is much harder to confidently extrapolate the RS loss increments
due to the nonideal BTD than the corresponding losses reported in [1] due to depth-8 interleaving. Some

of this erratic behavior is purely statistical, as a result of the small number of frames tested. If error bars

were shown in Figs. 12 through 15, they would lengthen dramatically proceeding from left to right as the

SER decreases to the point of undetectability for the small number of frames tested.

Figure 17 illustrates how the statistical fluctuations can be smoothed out for the first stage by having

eight times as much data. In Figs. 12 through 15, the only data used for the calculation of the magnifica-
tion factors in a given stage came from the specific codeword(s) decoded during that stage. For example,

the data for the first stage are from the observed RS symbol corrections in the single codeword with the

highest correctability, E = 47. It would be equally valid to perform hypothetical first-stage decodings
with correctabilities E t _< 47 on all eight codewords, if it can be assumed that the correct symbols are

eventually known in all eight codewords by the end of the fourth decoding stage. The data obtained from

all eight codewords are plotted in Fig. 17. Notice the improved smoothness of the curves relative to those

124



Table 2. FCD test results.

Number of BSNR at BSNR at VD loss RS loss Composite
FCD loss

Case decoded BTD output, Stage VD output, increment, increment,
frames dB dB dB dB increment,

dB

1 0.43 0.10 0.10

A 1184 0.53 2 0.42 0.11 0.15 0.3

3 0.43 0.10 <0.1

4 0.40 0.13 <0.1

1 0.34 0.14 0.15

B 372 0.48 2 0.32 0.16 0.15 0.3

3 0.32 0.16 0.10

4 0.27 0.21 <0.1

1 -0.08 0.09 0.20

C 491 0.01 2 -0.10 0.11 0.20 0.4

(3 frames 3 -0.14 0.15 0.20

failed) 4 -0.17 0.18 0.10

1 0.21 0.02 40.1

D 100 0.23 2 0.24 -0.01 <0.1 <0.1

3 0.24 -0.01 <0.1

4 0.22 0.01 <0.1

1 -0.05 0.09 0.10

E 100 0.04 2 -0.06 0.10 0.20 0.3

3 -0.08 0.12 0.20

4 -0.13 0.17 <0.1

1 -0.13 0.09 0.20

F 99 -0.04 2 -0.16 0.12 0.25 0.4

(1 frame 3 -0.20 0.16 0.10

failed) 4 -0.29 0.25 0.10

in Fig. 12. This procedure cannot be repeated for stages two through four, because the output error

characteristics from the Viterbi redecoder affect each codeword differently, depending on the placement

of the codeword relative to codewords decoded in previous stages.

In Fig. 15, we observed a dearth of data for making extrapolations of fourth-stage error magnification

factors. This is not a problem that can be cured by testing just a few more frames. When the decoder

is operating at the design threshold and above, each fourth-stage codeword will report very few symbol

corrections e. Values of e close to the code's correction capability, such as c = 5 or e = 4, will be highly

unlikely. Thus, with reasonable amounts of test data, there may only be two or three distinct values of

the hypothetical correctability E I for which any test results exist. It is difficult to justify extrapolations

of the error magnification factor curves based on only two or three points. Fortunately, as pointed out

earlier, the fourth-stage magnification factors seem to be somewhat more benign than those of the earlier

stages, and an accurate extrapolation is not necessary if the overall FCD loss increment is dominated by

the error magnifications in earlier stages.

Better estimates of the fourth-stage error magnification factor might be obtained by modifying the

test procedure to more closely resemble the analysis in [1], fixing a particular value of correctability (e.g.,

E r = 2 or E' = 3) and running a series of tests with the same loop parameters but different SSNR values.

In fact, because of the empirically observed near universality of the error magnification factor curves for

similar values of E _, testing different SSNR values is an appropriate way to merge more data into the

magnification factor estimates for any stage.
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Fig. 17. First-stage error magnification factors using eight
times as much data.

B. Tests Conducted Below Design Threshold

It was pointed out earlier that a few frames failed to decode for test cases C and F. As expected, these
failures always happened on the first-stage codeword, because the effective operating point (accounting

for all loss increments) was below the design threshold. The effective operating point for case E was also

below threshold, but by luck no decoding failures occurred over the small sample size of 100 frames. In

all of the analyses up to now, the data from undecodable frames have been completely ignored. There

was no report from the FCD on what the correct symbols were, and exact SERs and error magnification
factors cannot be computed. However, ignoring these frames biases the results optimistically. Figure 18

shows first-stage magnification factors computed for cases C and F by assuming that there were exactly 48
errors in the undecodable codewords. The magnification factors are increased relative to those reported

in Fig. 12, reaching well above 1 dB at SERs near 10 -3. Extrapolated magnification factors of 3 dB or

higher at a 10 -7 SER are certainly imaginable based on these adjusted data.

We have consistently made the assumption that the codewords decoded by the FCD represent the

truth data. This is a valid assumption as long as the test procedure is being applied at design threshold

and above. Below the design threshold, there is the possibility of encountering undecodable frames, as

in test cases C and F. One might also worry about incorrectly decoded codewords in the fourth stage,
where the small correction capability, E = 5, implies that there is a non-negligible probability of making

a decoding error. However, this should not happen unless the loss mechanism somehow concentrates its
deleterious effects on the fourth decoding stage and, thus, dramatically disturbs the design balance point.

In the usual circumstances, losses that drop the effective operating point below threshold will show up

as detected decoding failures on the first stage, because first-stage decoding performance declines most

sharply as the SNR drops below threshold.

It should be noted that the complicated test procedure described in this article is primarily intended

for analyzing FCD performance when codeword errors are rare, i.e., at threshold or above. Below thresh-
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Fig. 18. First-stage error magnification factors adjusted for
undecoded frames.

old, the FCD's performance deteriorates very rapidly, and there are sufficient codeword errors to make

simple error counting tests reliable. Thus, the extra complications needed to account for undecodable or

incorrectly decoded frames should not pose a problem in practice: at operating points where decoding

failures are likely, a simpler test procedure should be substituted for the one described here.

Here is an illustration of how different the conclusions are for a test conducted below threshold. For

case C, the observed first-stage codeword failure rate was 0.006, based on 3 failures out of 491 first-stage
codewords. When a first-stage codeword fails, about 20 percent of the symbols are erroneous, so the RS

output SER is around 10 -3. Due to the small number of observed undecodable words, this estimate is

not highly accurate, but it still gives a ballpark number. From Table 2, the effective BSNR at the Viterbi

decoder output is -0.08 dB, which is under the design threshold of 0.00 dB quoted in [1] for achieving a

10 -7 SER. From Figs. 3 and 4, it is seen that four orders of magnitude in RS output SER are equivalent

to about 0.17 dB of BSNR at the high slope of the first-stage code's performance curve. Therefore, the

first-stage RS loss increment for case C is slightly less than 0.1 dB rather than the 0.2 dB quoted in

Table 2. This apparent contradiction is resolved as follows. The calculations in this paragraph measure
the RS loss increment at the actual test conditions for case C, i.e., at an operating point producing an

SER around 10 -3. The calculations reported in Table 2 estimate how big the losses would be if the

operating point had been adjusted to produce an SER around 10 -7. The calculations for 10 -3 SER can

be directly verified by reference to the error magnification curves in Figs. 12 and 16 without any need for

extrapolation. The observed and reference error magnification factors at 10 -3 SER are about 0.85 dB

and 0.3 dB, respectively, translating into a net SNR loss of about 0.07 dB. This correlates well with the

calculation based on just three codeword failures. The additional 0.1 dB of RS loss increment predicted in

Table 2 for 10 -7 SER results from extrapolating the magnification factors in Fig. 12, along their observed
rate of increase, all the way to the 10 -7 SER level. The increasing error magnification factors correspond
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to a slight flattening of the high-slope first-stage performance curve as compared to the reference ideal

curves in Fig. 4. This flattening causes the RS loss increment to increase as the RS output SER is made

smaller.

C. Combining the Results From All Four Stages

We have described a procedure for evaluating stage-by-stage FCD loss increments as the sum of stage-

by-stage VD and RS loss increments, but we have not emphasized how to obtain the composite FCD

loss increment taking into account all four stages. If the four stage-by-stage FCD loss increments are

identical, then the composite loss increment is the same. The composite loss increment is no worse than

the worst of the stage-by-stage loss increments, and it approaches this limit when one stage dominates

the FCD's performance. Between these two extremes, it would be proper to calculate an average of the

stage-by-stage loss increments by explicitly considering the effect of each stage on the overall SER or
BER of the FCD. However, this complicated analysis would only improve the estimate over a narrow

band of loss combinations, because the performance of the FCD passes very quickly into dominance by

the performance of its weakest stage whenever its design balance point is disturbed.

We have also glossed over the precise error rate at which the FCD loss increment is evaluated. While

Galileo has a very specific overall BER requirement of 1 x 10 -7, we have spoken more vaguely of reaching

on each stage a target error rate on the order of 10 -7, and the error rates we have aimed at this target
are 8-bit RS SERs rather than BERs. Given the several orders of magnitude range over which the error

magnification factors must be extrapolated, there is no need to be more precise in specifying the exact

target, since the overall BER is about half the overall 8-bit SER for a long-constraint convolutional code,
and about one to two times the stage-by-stage 8-bit SERs.

Since our test procedure focuses on estimating individual stage-by-stage losses, it is also applicable to

testing a simple one-stage concatenated decoder without feedback. The RS loss increments seen in our

tests are qualitatively, if not quantitatively, similar to the RS loss increments that would be measured if

the (14, 1/4) convolutional code were concatenated with the standard 16-error-correcting RS outer code

and asked to perform at a 10 -7 SER level with nonideal input from the BTD.

VI. Conclusion

This article presents a test procedure that tests the performance of the FCD when the resulting

BER is very low (10 -7) and cannot be measured directly through simulations in a reasonable amount of

time. Using this test procedure, we have tested the FCD taking the input from the BTD which contains

multiplicative colored non-Gaussian noises. The preliminary test results show that there are about 0.3- to
0.4-dB loss increments in the FCD when the loop SNRs are lower than 20 dB as compared to analytical

results assuming AWGN. In one test case, where we had the subcarrier-loop SNR around 28 dB, the loss
increment in the FCD was less than 0.1 dB.

The numerical test results reported in this article are rough estimates due to the small amount of
test data and test cases that were run. However, the test procedure described herein should be used as

a template for conducting more extensive performance tests on the FCD in the future. This template

provides an organized robust methodology for extrapolating small amounts of test data to give reasonable
estimates of FCD loss increments at unmeasurable minuscule error rates.
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Appendix

Step-by-Step Test Procedure

Follow this procedure to test the FCD at operating points that produce an output BER of around
10-7

(1) Choose a set of loop parameters for testing. Based on the preliminary results in Tables 1

and 2 or on more extensive similar test results, guess a value of SSNR that will produce
an output BER around 10 -7. Generate a number of frames of encoded data, modulate

a carrier and a subcarrier with the data, add channel noise, and feed the resulting test
signal through the BTD. Pass the output of the BTD through the FCD and note the

results of the decoding.

(2) Estimate the SSNR at the output of the BTD using the split symbol estimator SS'NR.

Compute the BTD loss increment, in dB, as ALBTD ---- 10 lOgl0 SSNR/SS-NR.

(*) Repeat steps 3 through 10 for the output from each individual decoding stage, i =
1,2,3,4. For these steps, an ith stage codeword is defined as a codeword with cor-

rectability Ei, where E1 = 47, E2 = 30, E3 = 15, and E4 = 5.

(3) Observe the number of corrected symbols ei in each ith-stage codeword in each frame.

If any ith-stage codeword is undecodable, record this event as e, = Ei + 1, but be aware

that, if this event occurs frequently, the test procedure is being used outside its intended
range.

(4) Compute the VD output SER, SERvo(i), for ith-stage codewords as the sum of all the

observed values of e, divided by 255 times the total number of ith-stage codewords.

(5) Look up the measured value of SERvz)(i) on the Viterbi decoder performance curve for

the ith stage for Galileo's (14,1/4) code (Fig. 3) and interpolate to find the corresponding

value of BSNR. Compute the VD loss increment, in dB, as ALum(i) = 101og10(4 x

SSNR/BSNR).

(6) Compute output SERs, SERRs(i, E'), for RS codes with hypothetical correctabilities E'

greater than 255 x SERvD(i) and strictly less than the maximum value of e_ observed in

step 3: SERRs(i, E') is computed as the sum of the observed values of e_ for only those

ith-stage codewords with ei > E _, divided by 255 times the total number of ith-stage
codewords.

(7) Compute a lookup table of ideal RS output SERs, SER*ns(i , E), for RS codes with vary-

ing correctabilities E facing independent symbol errors occurring with rate SERvD(i).
This table generates the ideal RS performance curves shown in Fig. 4. Be sure that the

lookup table encompasses sufficient values of E for the interpolation in the next step.

(8) For each value of hypothetical correctability E' determined in step 6, interpolate us-

ing the lookup table in step 7 to find an equivalent ideal correctability E* such that

SER*Rs(i , E*) = SERRs(i, E'). Be sure to perform this interpolation based on loga-
rithms of error rates, e.g., for "linear" interpolation,

E* = E_ + Iog[SER*Rs(i,E_)/SERRs(i,E')]
log[SER*Rs(i, E_)/SER*ns(i, E_ + 1)]
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where E_ is the largest value of E for which SER*Rs(i, E) >_ SERRs(i, E'). For each
value of E ', compute a corresponding ith-stage error magnification factor, measured in

dB, as MF(i, E') = 10 log10 E'/E*.

(9) Plot MF(i, E') versus SERRs(i, E'), varying the parameter E t, to obtain a curve like

those in Figs. 12 through 15. Use good engineering judgment to extrapolate these curves
to the desired RS output SER level around 10 -7.

(10) Subtract 0.5 dB, or a little less, from the extrapolated error magnification factor obtained

in step 9. Then divide by 8, or a little less, to get a corresponding SNR loss. The result
is the RS loss increment, ALRs(i), for stage i, compared to the reference performance

derived in [1] for depth-8 interleaving and AWGN. The values to subtract or divide by

depend on the values E _ contributing to the error magnification factor curve: Subtract
0.5 dB and divide by 8 when E _ is approximately 15 or greater, and reduce these cal-

ibration values slightly to 0.4 or 0.3 dB and 7 or 6 when E _ is smaller. Since different
values of E _contribute to the same error magnification factor curve, the exact calibration

requires an exercise of good judgment.

(11) The FCD loss increment for the ith decoding stage is the sum of the ith-stage VD and RS
loss increments (measured in dB). The composite FCD loss increment for all decoding

stages is approximately the largest of the stage-by-stage FCD loss increments.
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An array feed combining system for the recovery of signal-to-noise ratio (SNR)

loss due to antenna reflector deformation has been implemented and is currently

being evaluated on the Jet Propulsion Laboratory's 34-meter DSS-13 antenna. In

th& system, the defocused signal field captured by a focal plane array feed is recov-

ered using real-time signal-processing and signal-combining techniques. The current

signal-processing and signal-combining algorithms are optimum under the assump-

tion that the white Gaussian noise processes in the received signals from different

array elements are mutually uncorrelated. Experimental data at DSS i3 indicate

that these noise processes are indeed mutually correlated. The main result of this

article is an analytical derivation of the actual SNR performance of the current

suboptimal signal-combining algorithm in this correlated-noise environment. The

analysis here shows that the combined signal SNR can either be improved or de-

graded depending on the relation between the array signal and noise correlation

coefficient phases. Further performance improvement will require the development

of signal-combining methods that take into account the correlated noises.

I. Introduction

Operation of deep-space communication networks at higher carrier frequencies has the advantage of

greater antenna gains as well as increased bandwidths for enhancing telemetry capabilities. However,

the use of higher frequencies also has certain disadvantages. These include more stringent antenna

pointing requirements and larger receiving antenna signal-to-noise ratio (SNR) losses due to mechanical

deformations of large reflector surfaces. These SNR losses become more significant at higher frequencies

when carrier wavelengths become smaller than the mechanical imperfections of the reflector. This is

the case in the Jet Propulsion Laboratory's Deep Space Network plan to employ Ka-band (32-GHz)

communications using 34- and 70-meter receiving antennas.

An array feed combining system for the recovery of the SNR loss due to antenna reflector deformation

has been proposed and analyzed in [1]. In this system, a focal plane feed array is used to collect the

defocused signal fields. All the signal power captured by the feed array is then recovered using real-time

signal-processing and signal-combining techniques. In phase and quadrature, baseband signal samples

are obtained from the downconverted received signal of each of the array feed elements and then are

recombined after application of combiner weights. The optimum combiner weights that maximize the
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combined signal SNR were derived in [1] under the assumption that the white Gaussian noise processes

in the received signals from different array elements are mutually uncorrelated. These optimum weights

depend on unknown signal and noise parameters that need to be estimated. The work in [1] proposed
to estimate the optimum weights from the observed residual carrier received signal samples using a

maximum likelihood (ML) estimation of these unknown parameters. The actual combined signal SNR
in this uncorrelated-noise environment was also derived in [1] when the estimated weights were used in

place of the optimum weight coefficients.

The array feed combining system is currently being evaluated at the JPL DSS-13 34-meter antenna.

Although the work in [1] assumed mutually uncorrelated-noise processes, experimental data [2] indicate
that the white noise processes in the received signals from different feed elements are indeed correlated,
with correlation coefficients of the order of 0.01 under clear-sky conditions. Since the noise in each of

the array feed element signals consists of receiver white noise plus noise due to background radiation,

this small correlation is conjectured to be caused by near-field atmospheric background noise. Although

the observed correlation in [2] is quite small in the current array feed combining system, future planned

improvements in the the receiver noise temperature could magnify the effect of atmospheric background
noise and result in considerably higher amounts of correlation. Thus, it is important to determine the

performance of the signal-combining system proposed in [1] when the white Gaussian noise processes in the

signals from different array elements are mutually correlated. That is the objective of this article, which

provides an exact analysis of the combined signal SNR performance in this correlated-noise environment.

The performance analysis here considers only the signal combining algorithm proposed in [1], which

was designed to operate in the environment where the white Gaussian noise processes in the signals from
different array elements are mutually uncorrelated. The effect of the correlation is twofold. First, the

optimum combining weights developed in [1] are no longer optimal in this correlated-noise environment.
The other effect of this correlation is on the resulting combined-signal SNR performance. The analysis

here shows that the combined-signal SNR can be either improved or degraded depending on the relation

between the array signal and noise correlation coefficient phases. Further performance improvement will

require effective combining systems that take into account the correlations between the array feed element

noise processes. Our work on this problem is still in progress.

II. Array Feed Signals and Combining Algorithm

Consider a K-element array and the NASA Deep Space Network standard residual carrier modulation

with a binary phase shift key (BPSK)-modulated square-wave subcarrier [3]. The received signal from

each array element is downconverted to baseband and sampled. The combining system proposed in [1]

uses only the residual carrier portion of the received signal spectrum to estimate the unknown parameters
in the combiner weights. The full spectrum modulated signals from the array elements, which contain
both the modulated sidebands as well as the residual carrier spectrum, are subsequently combined. In

this system [1], the higher-bandwidth primitive baseband signal samples are low-pass filtered by averaging
successive blocks of MB samples to yield a full-spectrum signal stream B for each array element. Additive

white Gaussian noise is assumed to be present in the primitive baseband signal sequences from each of

the array elements. Let

yk(iB) = Vk[cos 6 + js(iB) sin 6] + nk(iB), iB = 1,2,... (1)

denote the stream B signal samples from the kth array element. The complex signal parameters

Vk = IVkle_°_ (2)
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represent the unknown signal amplitude and phase parameters induced by the antenna reflector defor-

mation. Moreover, 5 is the modulation index, S(iB) ---- +1 is the transmitted data, and {nk(iB)} is the
zero-mean white Gaussian noise corruption in the stream B signal samples from the kth array element.

The primitive baseband signal samples are also more narrowly low-pass filtered by averaging succes-

sive blocks of MA samples to yield a residual carrier signal stream A for each array element. Clearly
MA > MB, and 71= MA/MB is the ratio of the bandwidth of stream B to stream A. Let

Uk(iA) = Vk COS _ + mk(iA), iA = 1,2,--. (3)

denote the stream A signal samples from the kth array element. Here {mk(iA)} is the zero-mean white

Gaussian noise corruption in the stream A signal samples from the kth array element.

Let A T and A t denote the transpose and complex conjugate transpose of the matrix A, respectively.

The white noise sequences corresponding to different array elements are assumed to be correlated. To

specify these correlations, consider

n(i.) = T
= v

Then (n(iB)} and {m(iA)} are each sequences of independent identically distributed (i.i.d.) zero-mean

complex Gaussian random vectors of dimension K. The respective covariance matrices

of n(iB) and m_(iA) then specify the mutual correlations between the white noises in the signal streams

from different array elements. For example, rBkj is the correlation between the noise variables nk(iS)

and nj(iB) in the stream B signals from the kth and jth array elements, respectively. Moreover, define

PBkj -- rBkj -- IPBkj] e j _'_ (4)
_/r BkkrBjj

to be the correlation coefficient between the noise samples nk(iB) and nj(iB). We shall assume as in
[1] that the complex Gaussian noise samples nk(iB) and mk(iA) each has statistically independent real

and imaginary parts of equal variance. This assumption is not required for the following analysis, but

is made to maintain consistency with the results reported in [1]. So, 2a2k = rBkk and 2a_k = rAkk are
the respective variances of nk(iB) and rnk(iA), where a_k and a_k are the respective variances of the

real or imaginary parts. Because of the different averaging rates in streams A and B on the primitive

baseband signals, it follows that R_B =rlR A. Finally, these different averaging rates also imply that m(iA)

is independent of n(iB) provided that iA < iB and the samples averaged to yield m(iA) occurred prior
to the samples averaged to yield n(iB).

The complex combining weight coefficients wk, 1 < k < K, given by

v; v;
- 2,7 . k - 2o ,¢ (5)
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were shown in [1] to maximize the SNR of the combiner output in the uncorrelated-noise case, resulting
in a maximum possible SNR equal to

K iVkl_ K iVkl2

k=l k=l

(6)

That is, the optimum attainable SNR in the uncorrelated-noise case is equal to the sum of the SNRs

of each of the feed array element outputs. The signal parameters Vk and the noise variances a_k are

unknown parameters that need to be estimated to obtain an estimate of the optimum weight coefficients.

Assume that these unknown parameters are not random. The estimates for Vk and a_k developed in

[1] are univariate sampling estimates based on the stream A residual carrier signal samples {uk(iA)}. In
the uncorrelated-noise case, the stream A signal samples from different array elements are statistically

independent. Hence, estimates of the weight coefficients wk based on these estimates of Vk and a_k are

also mutually independent. However, in the correlated-noise environment, these signal streams are no

longer mutually independent and, hence, the resulting estimates for Wk are also no longer independent.
In order to put this dependence in the proper perspective for the SNR performance analysis below, we

will describe the estimation techniques developed in [1] in terms of multivariate sampling estimates based

on the vector of stream A signal samples {_U(iA) } where

__(_A)= (_,(iA),' ",_(iA)) T

Instead of estimating Vk directly, consider estimating Xk = Vk cos 5. Define

X -- (X1,--.,XK) T

Then it follows from Eq. (3) that {lt(iA) } is an i.i.d, sequence of complex Gaussian random vectors with

mean X__and covariance matrix _RA. It follows from multivariate statistical analysis [4,5] that, based on

observations {u(iA -- 1),..-,U(iA -- L)},

2(iA) = (2,(_A),..
^ T I iA-_

,x_(iA)) : Z Z __(l) (7)
l=iA- L

is the ML sample mean estimate of X and

iA-1

1 (8)

l=iA -L

is equal to _L - 1)/(L - 2) times the corresponding sample covariance estimate of _RA. The approach
in [1] uses Xk(iA) as the estimate of Xk and consequently Vk(iA) = Xk(iA)/COS 5 as the estimate of Vk.
Moreover, the kth diagonal element 2&_k(iA ) of R__A(iA) is used in [1] as the estimate of 2a_k, which is

the kth diagonal element of R A. Finally, the estimate given by

Y_(iA) ^" "Xk(_a) (9)
_'k(i_) -- 2"_L(i----'_)-- 2'7COS__('A)
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was shown in [1] to be an unbiased estimate of the optimum combining weight coefficient wk given by

Eq. (5) in the uncorrelated-noise case. These weight coefficient estimates are used in a sliding window
structure to produce the following combiner output sequence:

K

z(iB) = _ (vk (iA) yk(i.) (10)
k=l

where iA is the largest integer less than iB, so that the residual carrier signal samples

{uk(_A -- 1),... ,uk(iA --L)} used for estimating _vk(iA) occur before the full-spectrum signal sample
Yk(iB).

III. SNR Performance Analysis

The objective is to determine the actual SNR of the combiner output in the correlated-noise environ-
ment. From Eqs. (1) and (10), the combiner output can be written as

where

z(i.) = sc(i.) + nc(i.) (11)

and

K

k=l
(12)

K

k=l

are the signal and noise components, respectively. Since the residual carrier signal samples used for the

estimates wk(iA) occur prior to the full spectrum signal samples yk(iB), and since {rnk(iA)} and {nj(iB)}

are i.i.d, sequences, it follows that wk(im) and nj(iB) are uncorrelated random variables for every k and
j. Each nj(iB) has zero mean. It then follows from Eqs. (13) and (12) that nc(iB) also has zero mean and

is, moreover, uncorrelated with sc(iB). Let Var[Z] = E [IZ- E[Z]I 2] denote the variance of a complex

random variable Z. Thus it follows from Eq. (11) that the actual SNR of the combiner signal output
z(iB) given by Eq. (10) can be written as

IE[z(i.)]l _ IE[_c(iB)]I_
_ML -- Var[z(iB)] -- Var[sc(iB)] + Var[nc(iB)] (14)

It is well known I4,51, that X__.(iA) and R__A(iA) are statistically independent and that 2(L - 2)_r2Ak(iA)/a_Ak
has a chi-square distribution with 2(L - 1) degrees of freedom. As a result of these properties, it follows
from Eq. (9) in a derivation similar to that in [1J that, for 1 < k < K,

E [_k(iA) l = Wk (15)
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where {wk} are the optimal combining weights given by Eq. (5). That is, the estimated weight coefficients
are unbiased as in the uncorrelated-noise case [1]. It then follows from Eqs. (12), (15), (5), and (6) that

for both the correlated- and uncorrelated-noise cases,

K

[E[sc(iB)]l = je'7 s(¢,)5 E E[_'k(iA)]Vkl = _ (16)
k=l

Consider next the variances of sc(iB) and nc(iB) in Eq. (14). Using Eqs. (12) and (15), we have

K K

k=l j=l

(17)

where wk is given by Eq. (5). Consider first the case when the Gaussian noise processes in the signals from

different array elements are mutually uncorrelated. Since zbk(iA) and _t)j(-iA) are pairwise independent

for k ¢ j in this case, the variance of Sc(iB) can be written as

K

Varu[sc(iB)] = E Var [wk (iA)] IVkt2 (18)
k=l

Let

K K
,, :2 e EE

k=lj=k÷l

v 5" {E }
(19)

Combining Eqs. (17), (18), and (19) then yields

Var[sc(iB)] = Varu[sc(iB)] +/31 (20)

Recall that nc(iB) has zero mean and tbk(iA) is statistically independent of nj(iB) for all k and j. Then,

similar to the derivation leading to Eq. (20), we can write

K K

Var[nc(iB)] : E E 13 [tbk (iA)ff:; (iA)] E [nk(iB)nj(iB)] : Varu[nc(iB)] + f12
k=l j=l

(21)

where

k=l j=k+l

(22)

and where
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K

V r Ino   /l=
k=l

is the variance of nc(iB) in the uncorrelated-noise case. It then follows from Eqs. (14) and (16) that the
actual SNR of the combiner output in the uncorrelated-noise case is given by

7UL = Varu[sc(i.)] + Varu[nc(iB)] (23)

So it follows from Eqs. (14), (16), (20), (21), and (23) that

(24)

where

31 + Z2 (25)
d = Varu[sc(iB)] + Varu[nc(is)]

The factor 1/(1 + d) in Eq. (24) represents the improvement in SNR caused by the correlation between

the noises in the signals received from different array elements. Note in particular that _1 and _2 can be

either positive or negative in value. Hence, an SNR improvement is obtained when d is negative and a
degradation is obtained otherwise.

Expressions for Varu[sc(iB)] and Varu[nc(iB)] are given in [1]. Thus, we need only determine _1 and
f/2 to obtain d and thereby obtain an expression for _ML from Eq. (24). In order to do this, we need

only obtain an expression for E[@k (iA)@] (iA)] when k # j. Using the property that X___(iA) is statistically

independent ofR__A(iA) , it then follows from Eqs. (9), (7), and (8) that, for k # j,

1 ]E[_ (_)_; (_)] 4,7_cos_ (26)

]R : 1RSince 2(iA) has mean X and covariance matrix T--A _'-L--B [5], it follows that

[ )] 1 .E 2; (iA) Xj (iA = _-_ rBk j + X;Xj (27)

Recall that 2(L - 2)b_k(iA) is the kth diagonal element of the matrix (L - _)R.__A(iA). Let

[A.]I A12]
A= LA12 A22J

be a 2 x 2 matrix where All and A22 are the kth and jth diagonal elements, respectively, and A12 is the
element in the kth row and jth column of (L - 2)__RA(iA). So we have
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1 ] =4(L_2)2E[ 1 ]E #_Ak(_A)-#2Aj(_A)
(28)

Complex multivariate statistical sampling theory [4,5] has shown that A has the same distribution as

that of _L--11 Z, Z_ _ where {Zi} is a sequence of i.i.d, zero-mean complex Gaussian random vectors with

covariance matrix E given by

[rAkk rAkj I 1 [rskk rBkj] (29)_--- = Lr*Ak3 rAjj = _ lr*Bkj rBjj J

This type of distribution is called a complex Wishart distribution [4,5], with parameters E and (L - 1).
Denote the determinant and trace of a matrix A by IAI and tr(A), respectively. Then if L >_ 4, the joint

Wishart probability density of (All, A22, A12) is given by [4]

L-3

p(Axl,A22, A12) : (A1,A22-1A1212)
7rr(L - 1)F(L - 2)[EI L-1 exp [-tr(E-1A)] (30)

for All, A22 >_ 0 and 1A1212 <_ AliA22, where F(x) is the gamma function. The derivation in Appendix A
obtains the expression given by Eq. (A-5) for Eli�AlIA22] starting from Eq. (30). Define for L _> 4 and

0_<x<l,

fL(X) = (L-- 2)(1-- x)L-3 _ ( k + L- 3)k
k=0

X k

k+L-2
(31)

Assume that the correlation coefficients between noise components of the kth and jth array element

outputs PBkj given by Eq. (4) are always less than one in magnitude. Then, by using Eqs. (28), (49),

(31), and (27), Eq. (26) can be written as

E ['t_ k (_'A) W; (iA)] : fL IPBkjl2 1 PBk--------2--J + 2 2
_L c_s 2_ 2aBkffB) 4aBkaB)

(32)

When IPSkjl < 1 and L > 4, we obtain, by using Eqs. (2), (4), (5), and (32) in Eqs. (19) and (22),

K K _" [ipBk)l 2 iVkl21Wjl_

k=l j=k+l 4CrBk_Bj

1 ) IWkllVjl IpBkjl COS(_kj--_Bk¢)+ 1 + r]Lcos2_ 2aBkaBj IV_121Vjl_}22 (33)
4_rBkff B j

where _Bkj is the phase of the correlation coefficient PBkj between nk(iB) and nk(iB) and where v_kj =

0k - 8) is the phase difference between the signal components of the kth and jth array elements. Finally,
by using Eqs. (44) and (48) of [1] for Varv[sc(iB)] and Varv[n_(is)], respectively, Eq. (25) can be written

as
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d = /71 +/_2 (34)

(HI
where/:71 + _2 is given by Eq. (33) and 7 is given by Eq. (6). In order to arrive at an explicit expression
for 7ML, we note that Eqs. (44) and (48) of [1] in Eq. (23) give

_U L 7 2= 2 (35)

So the actual SNR of the combiner output in the correlated-noise case can be determined from Eqs. (24),
(34), and (35) when L _> 4 and IPBkjl < 1. The two measures of particular interest in understanding the

SNR performance are 1/(1 + d) and 7ML/7. The measure 1/(1 + d) represents the gain in SNR caused

by the correlation between the array element noises and will be referred to as the correlation gain. In

the uncorrelated-noise case, _/_ML represents the loss in SNR due to the combining algorithm since 7

is the maximum possible achievable SNR. We shall adopt the same measure here and define 7ML/_[ as

the combining gain for ease of comparison with the uncorrelated-noise case. The combining gain also

represents the gain in SNR over the sum of SNRs of the individual array element outputs.

Let us examine the characteristics of the SNR performance. In the uncorrelated-noise case, the actual

SNR performance 7UL converges to the maximum possible SNR achievable 7 as the number of samples

L approaches infinity. It is interesting to also examine the combining gain in the correlated-noise case

as the number of samples approaches infinity. It is shown in Appendix B that fL(X) _ 1 as L ---* c_ for

0 <_ x < 1. Assume that the pairwise noise correlation coefficients PBkj are all less than one in magnitude.
Then, taking the limit as L --* oc in Eqs. (34) and (33) yields

K K

lim d= 2 E _ [VklIVJ]
L---*_ 7 20"BkO'Bj

k=l j=k+l

-- [PBk_[cos (_kj - _Bkj) (36)

So the limiting value of d can also be of either sign, positive or negative. In fact, the limiting value is

always negative if 0kj - _Bkj = 7_ for all k ¢ j, and always positive if 1)kj -- _gBk j = 0 for all k ¢ j.

It then follows from Eq. (24) that as L --_ co, the limiting value of the actual SNR performance 7ML

in the correlated-noise case can be either greater or smaller than the maximum possible SNR 7 in the
uncorrelated-noise case, depending on the relation between the signal and noise correlation phases. This

is not really that surprising, since the maximum possible SNR performance in the correlated-noise case
is generally not equal to 3'.

Bounds on the actual SNR performance "/A4L that depend on a fewer number of parameters than

the exact expression are also useful. We shall derive upper and lower bounds that depend only on the

maximum magnitude of the noise correlation coefficients and on 7, the sum of the SNRs of the individual

array element outputs. We first note the following inequalities derived in [1] for this purpose:

-<E),:, <- (37)

Similar to the left-hand inequality of Eq. (37), we have
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(38)

Applying the left-hand inequality of Eq. (37), the inequality of Eq. (38) gets the following upper bounds:

K K

2EE
k=l j=k+l

JVk `2'VJ'2 < 72 (1- K)-
(39)

and

K K

2 _ _ IVkiIVjl < (K- 1)7 (40)
k=l j=k+l 2(YBkCrBj --

Let

p_._ = max IPBkjl
k#j

be the maximum magnitude of the correlation coefficients between array element noise components. Note

from Eq. (33) that the worst-case phase resulting in the largest possible d occurs when 9kj - _Bkj = 0
for all k _ j. Hence, application of the left-hand inequality in Eq. (37), the inequalities of Eqs. (39) and

(40), and the bounds of Eq. (B-7) on fL(X) given in Appendix B yields the following upper bound on the
worst-case d:

d < (L - 2)(K - 1)pma_ [7 + (Kpmax +7)/_TLcos 26] +72( 1 - 1/K) (41)
- (L - 2) [7 + (7 + K)/71L cos251 + 72/K

Similarly, since the best-case phase resulting in the most negative possible d occurs when Okj - _flBkj -: 7r

for all k _ j, the following lower bound on the best-case d can be obtained:

(L - 2)(K - 1)pm_x7 [1 + 1/_L cos25] (42)
d _> - (L - 2) [7 + (7 + K)/_?L cos25] + 72/K

Finally, using the inequalities of Eq. (37) in Eq. (35) yields the following bounds on the actual SNR

performance 7UL in the uncorrelated-noise case:

(L - 3)72 (43)
_fUL --< (L - 2)[7 + (7 + K)/77 Lc°s2 5] + 72/K

and

(L - 3)72 (44)
7UIL --> (L - 2) [7 + (7 + K)/77L c°s2 5] + 7;

An upper bound on the actual SNR performance 7ML is obtained by using the lower bound of Eq. (42)

on d and the upper bound of Eq. (43) on 7UML in Eq. (24). Similarly, a lower bound on _ML is obtained

by using, instead, the upper bound of Eq. (41) on d and the lower bound of Eq. (44) on "yu L.
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IV. Numerical Example

We consider here the numerical example in [1] of using a K = 7 element array feed in the JPL

Deep Space Network. In this example, a modulation index _ -- 80 deg and a primitive sample period

To = 2.5 × 10 -s s are assumed. The full-spectrum modulation signal is assumed to be of bandwidth 2 × 106

Hz, which yields MB = 20. Moreover, the ratio of the full-spectrum bandwidth to the residual carrier

bandwidth ?7 -- MA/MB = 200. Nominal PT/No of 55 and 65 dB-Hz are considered with corresponding

"7 = (PT/No)MBTo. Upper and lower bounds on the combining gain ")'ML/"Y are shown in Fig. 1 as a

function of the number of samples L averaged to obtain the weight estimates. Here PT/No = 55 dB-Hz,

and maximum correlation coefficient magnitudes Pmax of 0.01 and 0.02 are considered. Convergence

of these bounds to within 0.01 dB of their limiting values occurs at about L = 3000 samples. This

corresponds to an averaging time of MAToL = 0.3 s and supports real-time operations for antenna

deformation compensation. The limiting upper bounds on the combining gain are about 0.26 and 0.56 dB

for pma= equal to 0.01 and 0.02, respectively. The corresponding lower bounds on the combining gain

are -0.26 and -0.50 dB, respectively. The actual limiting value for the combining gain, which is given

by Eq. (36), will fall between these bounds. Similar results are shown in Fig. 2 for PT/No = 65 dB-Hz,

where convergence of the bounds occurs at smaller values of L to virtually the same limiting values as

the PT/No = 55 dB-Hz case.

"o -1

Z

_O

Z

Z

< -2
_3

-3

-4

•--O--- LOWER BOUND - CORRELATION COEFFICIENT = 0.01

- ° • - UPPER BOUND- CORRELATION COEFFICIENT = 0.01

-.-O'.-. LOWER BOUND - CORRELATION COEFFICIENT = 0.02
•---B---- UPPER BOUND - CORRELATION COEFFICIENT = 0.02

10 102 103 104

NUMBER OF SAMPLES L

Fig. 1. Combining gain versus L for P-I./N0 = 55 dB-Hz.

Figures 3 and 4 plot upper and lower bounds on the correlation gain 1/(1 + d) for Pmaz equal to

0.01 and 0.02. Figure 3 considers PT/No = 55 dB-Hz and Fig. 4 considers PT/No = 65 dB-Hz. The

limiting values of these bounds are identical to the limiting values of the corresponding bounds on the

combining gain. The differences between the behavior of the lower bounds at PT/No = 55 dB-Hz and

those at PT/No = 65 dB-Hz are due to the looseness of these lower bounds at small values of L. For a

large number L of samples, the upper and lower bounds on the combining gain diverge as the maximum

correlation coefficient magnitude increases. This can be seen from Fig. 5, which shows the upper and

lower bounds on combining gain for PT/No = 55 dB-Hz at L = 5000 samples as pma= increases from

0.01 to 0.1. The upper bound increases from 0.26 to 3.96 dB and the lower bound decreases from -0.26

to -2.05 dB in this range of Pma_. The observed correlation coefficients of 0.01 magnitude in [2] were
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obtained in clear-sky conditions with a receiver noise temperature of 90 K and a system noise temperature

of 120 K. Improvement of the receiver noise temperature to 25 K will increase the correlation coefficient

magnitude to about 0.02. As noted above, a maximum possible improvement of 0.56 dB and a maximum

possible degradation of -0.50 dB results. Preliminary measurements at DSS 13 indicate that even larger

amounts of correlation occur under adverse weather conditions. This will result in even larger potential

improvement or degradation of SNR performance relative to the uncorrelated-noise case.

V. Conclusion

An array feed combiner system for the recovery of SNR loss due to antenna reflector deformation has

been implemented and is currently being evaluated on the Jet Propulsion Laboratory 34-meter DSS-13

antenna. The current signal-combining algorithms are optimum under the assumption that the white

Gaussian noise processes in the received signals from different array elements are uncorrelated. Exper-
imental data at DSS 13 indicate that these noise processes are indeed mutually correlated. The main

result of this article is an analytical derivation of the actual SNR performance of the current subopti-

mal signal-combining algorithm in this correlated-noise environment. The analysis here shows that the

combined-signal SNR can be either improved or degraded depending on the relation between the array

signal and noise correlation coefficient phases. Further performance improvement will require the devel-

opment of effective combining systems that take into account the correlations between the array feed

element noise processes.
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Appendix A

Derivation of E

We first obtain the joint probability density function p(An, A22) of (All, A22) by integrating Eq. (30)

over the complex region S -- (A12:[At21 < _} of values taken on by A12. Let ___G= (Gij} = _-1
and convert the variables G12 and A12 into polar coordinates: G12 = IG121e j_b and A12 -- re j4). Then it

follows from Eq. (30) that

p(A11, A22)
e- (G11 A11-t-G2:A22) L-3

: 71_(L----1)--_-_-2-_-_i L-1 S (AIlA22 -- I/{12'2)

S

e -27-¢e(G_2A12) dA12

-_ e-(GIlA11+G22A22) S r(A11A22 - r2) L-3 e-2rlG121 cos(¢-,p) de dr
7rr(L - 1)r(n - 2)I_EIL-_

o

---- 2e-(G"A"+G_2A2:) S r(AllA22 - r2) 5-3
F(/- 1)F(/- 2)l Z[ L-I

o

Io(2rlG12]) dr (A-l)

where Io(x) is the zero-order modified Bessel function of the first kind, which has series representation

oo x2 k

S0(x)= )--].
k=0

(A-2)

By making a change of the variable of integration using the series of Eq. (A-2) and the integral relation

(3.251) of [6], the integral in Eq. (A-l) can be written as

Av]_l 1A22

r(A11A22 -
o

r2) g-3 Io(2rlG121) dr

oo 2 k 1

L-2 i (1 -- s2)L-as2k+I ds
= (AliA2'_) _ (AllA22[G121)

k!
k=0 0

L-. oo ( _lGl.l') k__ (ALIA22) _ AliA2 [F(_-i- 1)__(L-?)]

k=0 [ 2r(k + L - 1) J

(A-3)

Substituting Eq. (A-3) into Eq. (A-l) and using the fact that F(n) = (n - 1)[ for integer n, we obtain

p(All, A22) = (AllA22)L-2 e-(GllAll+G2iA22) _ (AIIAu2[G12i2)k
_-2)! I_1L-1 k=0 k'--_(k7_:_

(A-4)
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Using Eq. (A-4), integrating term by term in the series, and obtaining G_ = E-1 and let directly from

Eq. (29) in terms of PBkj, rBkk, and rsjj, we have

E _ = (n- 2)]EIL-T{G11G22) L-2 k=0 k kTL---2

2 )7/ (1 - [PBkjl ) k_ 0 k + - 3 [PBkj] 2k (A-5)

The series in Eq. (A-5) can be shown to converge by using the ratio convergence test whenever [PBkjl < 1.

Appendix B

Bounds on fJx)

Let L _ 4 and 0 < x < 1. We will obtain upper and lower bounds on fL(X) that are asymptotically

tight in the limit as L --_ oc. First note that

k+n-2- k_L--3 _ k-_-L

and that for k _> 0,

L- 3 < k + L- 3 <1 (B-2)
L-2 - k+L-2 -

Using these bounds of Eq. (B-2) in Eq. (B-l), we have

L-3 < L-2 < (L-2_ L-3 (B-3)
k + L- 3 - k + L- 2 - -_---3 k + L- 3\ ]

Next, by using the bounds of Eq. (B-3) in Eq. (31), we get the following:

(1-_)L-3_ k+L-4 _k < fL(_)
k -

k=O

(B-4)

(L-- 2) (I_ x)L-3 _-_ (k + L-4) xkfL(X) < _ k
k=O

(B-5)

146



It can be shown in [7] that for 0 _< x < 1,

k=o k = _- x (B-6)

Using Eq. (B-6) in Eqs. (B-4) and (B-5), we then obtain, for 0 _< x < 1,

L-2

1 <_ fL(x) <_ L- 3 (B-7)

The upper and lower bounds given in Eq. (B-7) are both asymptotically tight in the limit as L --* c_. So

we can conclude that for 0 _< x < 1, fL(x) ---* 1 as L ---* oc, where the convergence is uniform in x.
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We consider the problem of finding a trellis for a linear block code that minimizes

one or more measures of trellis complexity for a fixed permutation of the code. We

examine constraints on trellises, including relationships between the minimal trellis

of a code and that of the dual code. We identify the primitive structures that can

appear in a minimal trellis and relate this to those for the minimal trellis of the
dual code.

I. Introduction

Every linear block code can be represented by a minimal trellis, originally introduced by Bahl et al. [1],

which is a labeled graph that can be used as a template for encoding or decoding. As shown by McEliece, 1
the minimal trellis simultaneously minimizes the maximum number of states, the total numbers of vertices

and edges in the trellis, and the total numbers of additions and path comparisons required for decoding

with the Viterbi algorithm.

In this article, we examine properties of the minimal trellis representation of a code and its dual for

a fixed permutation. A companion article [2] uses these results to examine the problem of finding a

permutation that minimizes one or more trellis complexity measures.

Section II reviews the subject of minimal trellises for a fixed permutation of a code. We examine the

building blocks of such trellises and identify several different measures of trellis size or complexity. In
Section III, we illustrate the connection between the minimal trellis of a code and that of the dual code.
The section includes results that describe the structure and complexity of trellises for self-dual and other

special codes.

1R. J. McEliece, "On The BCJR Trellis for Linear Block Codes," submitted to IEEE Trans. Inform. Theory.
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II. Minimal Trellis Representation of a Code

A. The Minimal Span Generator Matrix

For any linear (n, k) block code C over GF(q) there exists a minimal span generator matrix (MSGM)
representing C. A minimal trellis T for the code can be constructed from the MSGM. The trellis has

n + 1 levels of vertices and n levels of edges. The vertex levels, called depths, are numbered from 0 to n;

the edge levels, called stages, are numbered from 1 to n. Each stage of edges corresponds to one stage of
encoding or decoding using the trellis. Each vertex at depth i represents a possible encoder state after

the ith stage of encoding. The ith stage corresponds to the ith column of the generator matrix, whereas
the ith depth corresponds to the "space between" columns i and i + 1.

The edge span of any row of the generator matrix is the smallest set of consecutive integers (stages)
containing its nonzero positions. The vertex span of the row is the set of depths i such that at least one
nonzero symbol occurs before and after depth i. Using the generator matrix to encode k information

symbols in n stages of encoding, the edge span of the jth row represents the interval of stages during
which the jth information symbol can affect the encoder output. The vertex span of the jth row is the
set of depths at which the jth information symbol can affect the encoder state.

For example, the (6,3) shortened Hamming code has the minimal span generator matrix

[ 1100G= 1 0 1 0

0 1 1 1
(1)

The edge spans are {1,2,3}, {2,3,4,5,6}, and {3,4,5}. The vertex spans are {1,2}, {2,3,4,5}, and
{3, 4}. We use the term span length to refer to the cardinality of a span.

A remarkable result is that the MSGM simultaneously makes all of the spans as short as possible: The

edge spans (vertex spans) for any other generator matrix representing C always contain the corresponding

spans of some row-permuted MSGM. 2 Any generator matrix can be put into minimal span form using the

following greedy algorithm: At each step, perform any row operation that reduces the edge span of any

row of the matrix. The rows of the MSGM are then "atomic codewords," according to the terminology
of Kschischang and Sorokine [5].

Each vertex or state at a given depth can be uniquely labeled using k or fewer symbols from GF(q).

But any given state-label symbol can be reused to represent several information symbols, as long as the

vertex spans of the corresponding rows of the generator matrix do not overlap. This reassignment of

state-label symbols to multiple rows of the generator matrix is the key to efficient trellis representations
of the code.

For example, the minimal trellis T produced for the (6,3) shortened Hamming code with MSGM given

in Eq. (1) is shown in Fig. 1. For this trellis, we can define the binary state label to be s2sl, where s2 = 1

at depth i if the second information bit is 1 and i is within the vertex span of the second row, and Sl = 1

if either (1) the first information bit is 1 and i is within the vertex span of the first row or (2) the third

information bit is 1 and i is within the vertex span of the third row. This time-sharing arrangement for
state bit sl is possible because the vertex spans of the first and third rows do not overlap.

In the sequel, we will be interested primarily in nondegenerate codes, which we define as codes whose

minimum distance d and dual code minimum distance d ± are both at least 2. Degenerate codes have a

simple interpretation: If d < 2, the vertex span of some row of the MSGM must be empty; if d ± < 2,

2 Ibid.

149



0 1 2 3 4 5 6

STATE 1 2 3 4 5 6
_81 0 0 0 0 0 0

o 1 '_- 1o: =o1"

1 1 0 0

DEPTH

STAGE

Fig. 1. A minimal trellis for the (6,3) shortened Hamming code.

some column of the generator matrix must be identically zero. For a degenerate code, we can simply

ignore the extraneous symbol positions (if d ± < 2) and/or separately decode the unprotected information

symbols (if d < 2). The code consisting of the remaining code symbols is then nondegenerate.

B. Past and Future Subcodes

Following Forney [3], let us define the ith past and future subcodes, denoted P_ and _-_, to be the sets
of all codewords whose vertex spans are contained in [0, i - 1] and [i + 1, n], respectively. The dimensions

of these codes can be easily determined from the MSGM: fi g dim(JC=) is the number of rows for which

the leftmost nonzero entry lies in column i + 1 or later, and p= _- dim(79i) is the number of rows for which

the rightmost nonzero entry lies in column i or earlier. 3 This implies that Pi and f_ are monotonic,

O=po<_px <'"<pn=k=fo>-fl >"" > fn=O (2)

and never change by more than 1 from one index to the next.

For each 1 _< i < n, we define the left- and right-basis indicators, l=,ri E {0, 1}, to identify the positions

where the future and past dimensions change:

A

li _ fi- 1 - fi ri = Pi -- Pi- 1

For any i, li = 1 if and only if the edge span of some row of the MSGM G begins in column i, or

equivalently, the ith column of G is linearly independent of the i - 1 columns to the left. Similarly, ri = 1

if and only if the edge span of some row of G ends in column i, i.e., the ith column of G is linearly

independent of the n - i columns to the right. The columns where li = 1 and the columns where ri = 1
each forms a basis for the column space of G, and these sets are called the left basis and the right basis,

respectively. The positions of the left and right basis columns can be regarded as information positions
when the generator matrix is used to encode the information left to right or right to left, respectively.

C. Primitive Structures of s Minimal Trellis

There are four basic building blocks that can be used to construct the minimal trellis for any nonde-

generate code. At any given stage i, all primitive structures are of the same type, which is determined

by the values of li and ri. The primitive structures are

3 Ibid.
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(1) Simple extension (-): This primitive structure appears at stage i when I_ = 0, r_ = 0,

e.g., stage 4 in Fig. 1. Simple extensions at stage i imply a single edge out of each vertex
at depth i - 1 and a single edge into each vertex at depth i; hence, the number of vertices
remains constant.

(2) Simple expansion (<): This corresponds to li = 1, r_ = 0, e.g., stages 1 and 2 in Fig. 1.

There are q edges out of each vertex at depth i - 1, and a single edge into each vertex at

depth i, hence, multiplying by q the number of states from one vertex depth to the next.

(3) Simple merger (>): This corresponds to l_ = 0, r_ = 1, e.g., stages 5 and 6 in Fig. 1. A

simple merger is a time-reversed simple expansion, reducing the number of states by a
factor of q.

(4) Butterfly (x): This corresponds to li = 1,r_ = 1, e.g., stage 3 in Fig. 1. There are q

edges out of each vertex at depth i - 1 and q edges into each vertex at depth i; hence,
the number of states is constant.

The total numbers of such primitive structures in the trellis are denoted by N_, N<, N>, and N x ,

respectively. For example, the trellis in Fig. 1 has N< = 3 = N>, N x -- 2, N_ = 4. Because the graph

has exactly one initial node and one terminal node, the total number of simple expansions must equal
the total number of simple mergers:

Y<: _ N>

The total number of edges in the trellis, E, can be found by counting the number of edges associated
with each primitive trellis structure:

E = N_ + qN< + qN> + q2N X (3)

Similarly, the total number of mergers M is the sum of the number of simple mergers and the mergers
included in butterflies:

M = N> + qN x (4)

If we count the total number of vertices associated with each primitive structure, then each vertex in

the trellis (excluding initial and terminal nodes) will be counted twice, so the total number of vertices V
satisfies

2V-2=2N_ +(q+l)N<+(q+l)N>+2qN z

which gives

V = 1 +N_ + (q+ 1)N< +qN:e (5)

Combining Eqs. (3), (4), and (5), we find

E-V+I
M-

q-1

This is the generalization of the binary version of this result found by McEliece. 4

4 Ibid.
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D. Measures of Trellis Complexity for Viterbi Decoding

The vertex space dimension at depth i is

vi = k- f, - pi, i = 0,...,n (6)

and the edge space dimension at stage i is

e, = k - fi - Pi-1, i = 1,...,n (7)

The total number of vertices at depth i is q", and the total number of edges at stage i is q_'. Of course,

vi >_ 0 for all i since at least one vertex must exist at each depth. Also, for nondegenerate codes, ei > 1

for all i, i.e., no stage consists of a single edge.

The most commonly used measure of Viterbi decoding complexity for a minimal trellis is the maximum

dimension of its state space,

(s)8max = max vi
i

This complexity metric has been cited as one of the essential characteristics of any code [6]. Similarly,
the maximum dimension of the edge space is

(9)
emax = miax ei

Forney argues that this is a more relevant complexity measure because, unlike Smax, this quantity cannot

be reduced by combining adjacent stages of a trellis [4].

A different metric, used in McEliece's derivation of the MSGM, 5 is the total length of all the edge

spans of the rows of the MSGM:

k

= Cj

j=l

(10)

where ej denotes the length of the edge span of the jth row of the MSGM. A similar span length metric
is the total length of all the vertex spans:

k

/]=

j=l

where uj = sj - 1 is the length of the vertex span of the jth row of the MSGM. These two metrics are
equivalent to the sums of all the edge dimensions or vertex dimensions (summed over stages or depths,

respectively):

5 Ibid.
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n 1%

i=l i=O

MeElieee argues that more meaningful measures of Viterbi decoding complexity are the total numbers

of edges E, vertices V, and mergers M, rather than simply the vertex or edge dimensionality: 6

n

E = Eqe' (11)
i=1

n

v = qV, (12)
i=0

'_ _2_ 1_-_ 1 ___M = E riqv_ = liq v,-, = - l_qe_ = - riq e' (13)
_=1 i=1 q i=1 q

E is equal to the number of binary additions required to compute path metrics, and M is the number of

q-ary comparisons required to merge trellis paths. The computational complexity of Viterbi decoding is

proportional to E. r

III. Minimal Trellis Representation of the Dual Code

In this section, we explore the relationship between the minimal trellises for a code C and its dual C±.

A. Past and Future Subcode Relationships

As discussed in Section II.B, l, = 0 if and only if the ith column of the MSGM can be written as some

linear combination of the i - 1 columns to its left. In other words, there exists a dual codeword y of the
form

y = XXX...X 1000...0

i-1 n-i

Where XXX...X denotes some sequence of symbols from GF(q). Defining Yl,Y2,'",Yn-k in this

manner for each of the left-dependent columns in the MSGM produces n - k dual codewords of the form

Yl = XXX

Y2 = XXX

Yn-k = XXX

• .X1000-.. 0

• . X1000...0

X1

These dual codewords are clearly linearly independent and, thus, can be used as the rows of the generator

matrix for C±. We see that the positions where r_ = 1 are precisely the positions where li = 0; the same

argument applied to the right-dependent columns shows that the positions where l_ = 1 are precisely the

6 Ibid.

7 Ibid.
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positions where r, = 0. Here l_ and r_ are the left- and right-basis indicators for CJ-. These observations

lead to the following theorem.

Theorem 1. For each 0 < i < n, the left- and right-basis indicators for a code and its dual are related

by

l, + T_ = l_ + r, = 1

and the dimensions p,, f_ of the past and future subcodes of a code are given in terms of those of the

dual code p_, f_ as follows:

p_ =k-n+i+ f_

fl = k-i+p_

We believe that this result, which relates minimal trellises of a code and dual for any fixed permutation,

is more fundamental than similar dual relationships for permutations of codes. This result is also contained

in [4], but is derived by first considering permutations of codes.

B. Primitive Trellis Structures for the Dual Code

Much information about the trellis for the dual code can be inferred from the trellis structure of the

code. For example, if the code has a simple expansion at the ith stage, then l_ = 1, ri = O, which implies,
using Theorem 1, that the dual code has l_ = 1, r_ = 0; hence, the trellis of the dual code also has a

simple expansion structure at this stage. Repeating this procedure, we find the "dual" of each primitive

structure, shown in Table 1.

Given an unlabeled trellis, Table 1 can be used to determine the number and type of primitive structures

present at every depth of the trellis for the dual code. However, we cannot in general determine the
interconnections without additional information about the code.

The dual relationship for primitive structures shown in Table 1 implies that

NX< =N<=N>=N> _

and

N_ =qN_

C. Dual-Code Complexity Measures

The following well-known result, first noted by Forney [3], is a consequence of Eq. (6) and Theorem 1.

Lemma. A code and its dual code have equivalent vertex spaces, namely, for each i,

V_ ---- V/l-
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Table 1. Dual primitive structures.

Code structure Dual structure

Simple extension (-)

li = O, ri = 0

Simple expansion (<)

li = 1,ri = 0

Simple merger (>)

li = O, ri = 1

Butterfly (x)

li = 1,ri = 1

Butterfly (x)

li"L = 1,ri -L = 1

Simple expansion (<)

l_ = 1, r_ = 0

Simple merger (>)

l,_= 0,r,_ = 1

Simple extension (-)

t,_= o,_,_= o

Consequently, many of the trellis complexity measures for a code can be determined by evaluating the

same measure on the dual code:

V =V -t-

2_
8max = 8max

e-k =v=v2_=e ±-(n-k)

Note that this implies ¢ = e ± for any rate 1/2 code.

The number of edges in the minimal trellis of a code and its dual is not as conveniently related. From

Eq. (7) and Theorem 1,

ei = e_ + (1 - r_ -l_)

for each 1 < i < n. Consequently, since 11 - r_ - l_[ ___1, and from the definition of E,

1E < E ± <_ qE
q

Equality is possible only for the degenerate (n, n, 1) code or its dual.

D. Minimal Trellises for Self-Dual and Other Special Codes

For self-dual codes, the theory of the previous two sections collapses neatly to yield stronger results

because, for any such code, l_ = l_ and ri = r_ for all i. Consequently, from Theorem 1,

Theorem 2. For any self-dual code C, for each i = 1, 2,... n, either

(1) li=l andri=0, or

(2) li = O and ri = l
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i.e., every stage corresponds to an information symbol when encoding from one direction and a parity
symbol when encoding from the other direction. The only primitive trellis structures in T(C) are simple

expansions and simple mergers.

The converse of Theorem 2 does not hold: A code whose minimal trellis contains only simple expansions

and mergers need not be self-dual. However, such a trellis can always be relabeled to represent a self-dual
code.

The following theorem, which is a consequence of Theorem 2 and Eqs. (3), (4), and (5), shows that,

for self-dual codes, the complexity measures E, V, and M are linearly related, and the maximum edge

and vertex dimensions are equal.

Theorem 3. For any self-dual code,

V - q+lE+l
2q

M = 1E
2q

Sma x : ema x

There is another case where we can restrict the type of structures that can appear in the trellis for a

code:

Theorem 4. If C is a code with all codeword weights divisible by some integer m > 2, then,

(1) There does not exist a position i such that li = ri = 1, i.e., T(C) contains no butterfly
structures.

1

(2) C cannot have rate greater than 2'

(3) emax = Smax

(4) V>_ (q+---_l)E+l

(5) M < 1E
- 2q

/0, +1
(7) M ± > 1E±

- 2q

Proof" If li = r, = 1, then the ith column begins and ends spans in the MSGM. This implies the

existence of codewords of the form x = XXX...XIO n-i and y = Oi-I(-1)XXX ...X, where (-1)

denotes the additive inverse of 1 in GF(q) and XXX... X denotes some string of symbols in GF(q).

Then x + y is a codeword of weight [x I + lYl - 2, which cannot be divisible by m. This proves (1). From

(1), we have li+ri <_ 1 for all i, so 2k = __,_=l(li+ri) <_ _-_in=l 1 = n, which proves (2). The fact that T(C)
n l ncan have no butterfly structures proves (3). From Eq. (13), 2qM = _-_i=1( i + ri)q e_ -< _i=1 qe, = E,

proving (5), and (4) follows directly. Since li + r, <_ 1, Theorem 1 implies l_ + r_ _> 1, which gives (6)

and (7). [_
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Codes for which all codeword weights are divisible by some integer other than one are called divisible

codes [7]. Examples of divisible codes include the (31,10,12) binary cyclic codes and doubly even self-dual
codes such as the extended Golay code.

The converse of Theorem 4 does not hold--a code is not necessarily divisible when l_ + ri < 1 for all

i. If a code and its dual satisfy the conditions of Theorem 4, then the code strongly resembles a self-dual

code: The code must have rate 1/2 and its trellis contain only simple expansions and simple mergers.

IV. Conclusion

In this article, we have examined the trellis complexity problem by first considering the minimal span
generator matrix for a fixed permutation of a code. McEliece showed that the so-called minimal trellis

indeed minimizes not only the maximum state dimension of the trellis but also a whole gamut of com-
plexity measures, s Here we have augmented the list of reasonable complexity measures and interrelated

them. We have also illustrated the connection between the complexity measures and the four primitive
structures of a minimal trellis for a nondegenerate code.

We developed some useful relationships between the minimal trellis of a code and that of its dual.

The duality relationships lead to interesting connections among several of the complexity measures for
the special case of self-dual codes.
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We consider the problem of finding a trellis for a linear block code that minimizes

one or more measures of trellis complexity. The domain of optimization may be
different permutations of the same code or different codes with the same parameters.

Constraints on trellises, including relationships between the minimal trellis of a code

and that of the dual code, are used to derive bounds on complexity. We define a

partiM ordering on trellises: If a trellis is optimum with respect to this partial

ordering, it has the desirable property that it simultaneously minimizes all of the

complexity measures examined. We examine properties of such optimal trellises

and give examples of optimal permutations of codes, most notably the (48,24,12)
quadratic residue code.

I. Introduction

A minimal trellis is a labeled graph that can be used as a template for encoding or decoding. In [6],
we examined properties of trellises for fixed permutations of a code. A code's minimal trellis is unique

as long as the ordering of the code's symbols is fixed. However, different permutations of the symbols

yield different minimal trellises. An optimum minimal trellis for the code is one that minimizes a suitable

measure of trellis complexity over all possible permutations of the code. There are no known efficient
algorithms for constructing optimum minimal trellises.

We expand the results of [6] to examine the problem of finding a permutation that minimizes one or

more trellis complexity measures. We extend these results to the problem of finding a minimal complexity
trellis over all codes with the same parameters. We identify certain sufficient conditions for a code or a

permutation to simultaneously minimize all of the complexity measures.

In Section II, we discuss dimension/length profiles of a code [3,11], which are equivalent to Wei's

generalized Hamming weights [12]. The dimension/length profiles are used to derive some straightforward

complexity bounds. We summarize some properties of these profiles, including duality relationships.
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We define a partial ordering on minimal trellises in Section III. If the minimal trellises for two codes

are comparable in terms of this partial ordering, then each of the complexity measures for one trellis is

bounded by the same measure evaluated for the other trellis. This partial ordering can sometimes be

used to identify the permutation of a code with the least (or most) complex minimal trellis, or the code

with the lowest (or highest) complexity trellis of all codes with the same parameters. The extremal codes

determined by this partial ordering turn out to meet the complexity bounds described in Section II. We
illustrate certain properties and give examples of such permutations and codes.

II. Trellis Complexity Bounds

The minimal trellis results of [6] assume a fixed coordinate ordering for the code. However, the trellis

structure and, hence, trellis complexity are different for different permutations of the code coordinates.

Massey refers to the procedure of reordering the code symbols to reduce the trellis complexity as "the art

of trellis decoding" [9, p. 9].

In this section, we identify code parameters that affect the possible trellis complexity, describe upper

and lower bounds based on these parameters, and illustrate properties of certain codes that have low

complexity trellises. Our results apply to a gamut of possible complexity measures introduced in [6]: the

maximum vertex (state) and edge dimensions (Smax,emax), the total vertex and edge spans (v, 6), and
the total numbers of vertices, edges, and mergers (V, E, M). In this article, all theorems are presented

without proof; proofs are supplied in a separate article.:

First, some notation: Let S,_ denote the set of all permutations of {1,2,. •., n}, and for any 7r c Sn, let
CTr denote the code C with coordinates reordered according to 7r. Because the code and dual code provide

symmetric constraints on the code's minimal trellis, the complexity bounds are developed by considering
the characteristics of both the code and its dual. We refer to an (n, k,d) code over GF(q) with dual

distance d ± as an (n, k, d, d±) code.

A. Bounds Relating One Complexity Measure to Another

The following lemma arises from the definitions of Smax and emax and from the fact that the vertex

and edge dimensions, vi and ei, change by no more than one unit from one index to the next.

Lemma 1. The vertex dimensions and edge dimensions are upper bounded by

vi <_ min{i,n - i, Smax}, 0<i<n

ei < min{i,n + l - i, ema×}, l<i<n

Summing the inequalities in Lemma 1 leads to the following bounding relationships among the com-

plexity measures.

Theorem 1. The total complexity measures _, :, V, E are upper bounded in terms of the maximum

complexity measures Smax, emax by

/] _ Smax(n -- 8max) (1)

1 A. B. Kiely, S. Dolinar, R. J. McEliece, L. Ekroot, and W. Lin, "Trellis Decoding Complexity of Linear Block Codes,"

submitted to IEEE Trans. In fo_'m. Theory.
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(_ emax(n + 1 - emax) (2)

V< [n+ q+l- q_---Z-_ - 2Sma_

2
qS ...... (3)

q-1

E< In+ 2q ] q_ .... 2q_ q-----_ - 2emax -- -- (4)-- q--1

Since the average edge dimension over all stages is sin and the average vertex dimension over the last

n depths is u/n, loose lower bounds on V and E can be obtained from Jensen's inequality.

Theorem 2. The total complexity measures V, E are lower bounded in terms of the total span length
complexity measures u, s by

V > 1 + nq "/n

E >_ nq _/'_

There are also tighter lower bounds on V and E in terms of u and s.

Theorem 3. Given a total span length u, or equivalently s, let As = e - e-(n + 1 - e-) and
Au = u - s-(n - s-), where e- < (n + 1)/2 and s- < n/2 are the largest integers such that As _> 0 and
At, > 0. Then

V> [n + q + l 2s_] q_- _ _2- q---_ - q - 1 + (q - 1)q_ Au

E> In+ 2q 2e_]q e- 2q- q---Z- i - - q_---Z-_+ (q - 1)q¢ As

This theorem follows from the observation that, for a given u or e, a vertex or edge dimension profile
such as the one in Fig. 1 minimizes V or E. Notice the similarity of these lower bounds in terms of s-

and e- with the corresponding upper bounds, Eqs. (3) and (4), in terms of Sma× and ema×.

Fig. 1. An edge dimension profile that minimizes E subject to a
constraint on total edge span E.

B. Complexity Lower Bounds Based on MSGM Span Length

Every row of a generator matrix for an (n,k,d,d L) code must have edge-span length si _> d and

vertex-span length ui _> d- 1. Applying this simple bound to both the code and the dual code and using
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the fact that v± = u = e - k leads to the following lower bounds on the span length complexity measures

v and e.

Theorem 4. The total lengths v and _ of the vertex spans and edge spans for any (n, k, d, dz) code

are lower bounded by

v >_ max{k(d- 1),(n- k)(d ± - 1)}

>_ k + max {k(d - 1), (n - k)(d ± - 1)}

Applying the Singleton bound to the inequalities

(d-1)(d ±-l) ande_>k+(d-1)(d ±-1).

in this theorem gives the weaker bounds v >

We say that a code meeting the bounds in Theorem 4 with equality is a minimal span code. An

example is the (n, 1, n, 2) repetition code. To construct a nondegenerate (n, k, d, 2) binary minimal span
code for any d > 2 and n >_ d + (k - 1) rd/2], let the first row of the minimal span generator matrix

(MSGM) be

111...1000..-0

d n-d

and form each successive row by cyclically shifting the previous row at least [d/2] positions but not more

than d positions to the right, such that the total of all the shifts is n - d. The dual of a minimal span
code is also a minimal span code. These codes are not usually good in terms of distance, though they

have very low complexity trellises.

The span length bounds in Theorem 4, combined with the bounds of Eqs. (1) and (2), lead to lower
bounds on the complexity measures Sma×, emax for any (n, k,d, d a-) code:

Smax(n -- Smax) _> max {k(d - 1), (n - k)(d x - 1)}

emax(n + 1 -- ema×) _> k + max {k(d - 1), (n - k)(d ± - 1)}

A slightly weaker version of this bound on Smax has been proved for both linear and nonlinear codes

[8]. This bound implies, for instance, that the average edge dimension emax can never be lower than
the asymptotic coding gain kd/n. We can also obtain bounds on V and E for any (n, k, d, d _) code by

substituting the right-hand sides of the bounds in Theorem 4 for v and _ in Theorems 2 and 3.

C. Dimension/Length Profiles

We can see from the definitions of the complexity measures in [6] that a permutation of C that makes f_

and p_ large (small) wherever possible will produce a low (high) complexity trellis. It is useful, therefore,

to find bounds on these quantities.

The support of a vector x is the set of nonzero positions in x. The support of a set of vectors is the

union of the individual supports.

Definition 1. For a given code C and any 0 < i < n, let Ki(C) be the maximum dimension of a linear

subcode of C having support whose size is no greater than i. The set {Ki(C),i = 0,..., n} is called the

dimension/length profile (DLP) [3,11].
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The DLP and similar concepts have been used recently by many other researchers to bound trellis

complexity. Extensive bibliographies are given in [3] and Kiely et al. 2 Since the past and future subcodes

T's and _-, are subcodes of C with support size no larger than i and n - i, respectively, the past and future
subcode dimensions are bounded by the DLP

pi _< maxps(C_r) = Ki(C)
7rES_ (5)

A <_Kn_s(C) (6)

These bounds, which also appeared in [4, Eq. (1.4)], are tight in the following sense: For any i, there

exists a permuted version of C that meets the bound of Eq. (5) and one that meets Eq. (6), though it
may not be possible to meet both simultaneously. The DLP of a code can be used to lower bound the

trellis complexity for any permutation of that code, as we shall see in Section II.E.

Since each Ki(C) is associated with a linear subcode of C, we can use bounds on the best possible
linear codes (i.e., codes with the largest possible minimum distance) to upper bound the DLP:

Theorem 5. For an (n, k, d, d -L) code C and any 0 < i < n,

Ps <_ K_(C) < -Ks(n,k,d,d ±)

fs <_ Kn-_(C) <_ -Kn__(n,k,d,d ±)

where

Ks(n, k, d, d±) _- min[kmax(i, d), k - n + i + kmax (n - i, d-L)]

and kmax(m, d) is the largest possible dimension for any q-cry linear block code of length m and minimum

distance d. The set {Ks(n, k, d, d±), i = 0,..., n} is called the upper dimension/length profile (UDLP)
for the code parameters (n, k, d, d±).

Bounds based on the UDLP may be loose, as it may not be possible for a single (n, k, d, d -L) code and

its dual to both have a series of subcodes, all with the maximum code dimensions. However, these bounds

are important practically, because much data about the best possible codes have been tabulated [1] and,
in many cases, the UDLP bounds can be achieved with equality.

Since for any (n, k) code C, Ps and fs both reach maximum values of k (f0 = k and Pn = k) and can
fall from these values at a maximum rate of one unit per trellis stage, p_ and fs are lower bounded as
follows:

Ks(C) > p_ > Ks(n , k) _- max(0, k - n + i) (7)

Kn_s(C) _> f_ _> K__i(n , k) = max(0, k - i) (8)

The set {Ki(C), i = 0, 1,..., n} is called the lower dimension/length profile (LDLP) for the code param-
eters (n, k). The LDLP stays at 0 until the last possible depth before it can rise linearly at the rate of

one dimension per depth to reach its final value of k at depth n. The LDLP can be used to upper bound
the complexity of a minimal trellis for an arbitrary (n, k) code.

2 Ibid.
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D. Properties of Dimension/Length Profiles

The DLPs possess many of the same properties as the past and future subcode dimensions that they

bound. For example, the monotonicity and unit increment properties of {Ps} also hold for Ks(C), "-Ks(C),

and Ks(C): The increments Ks+l (n, k, d, d±) -Ks(n, k, d, d±), Ks+l (C) -Ks(C), and Ks+ 1 (n, k) -Ks(n, k)

must equal 0 or 1 for all i. Similarly, duality properties can be easily extended.

There is a convenient relationship between the DLP of a code and that of its dual, stated in [4,

Eq. (1.12)] and [3, Theorem 3], which is equivalent to the duality relationship for generalized Hamming

weights [12, Theorem 3]. Similar relationships hold for the upper and lower dimension/length profiles:

Lemma 2. For all 0 < i < n, the DLP, UDLP, and LDLP satisfy the following duality relationships:

Ks(C z)

-Ki(n,n - k,d±,d)

Ki(n, n - k)

= i - k + Kn-s(C)

= i - k +'K,n-s(n,k,d,d ±)

= i - k + Kn_s(n, k)

E. Complexity Bounds From Dimension/Length Profiles

The DLP bounds, Eqs. (5) and (6), combined with the complexity definitions lead to simple bounds

on trellis complexity that are useful when the DLP of a given code is known. These bounds can be

tightened slightly by using the additional fact that the vertex and edge dimensions must be nonnegative

everywhere.

Theorem 6. The complexity measures for the minimal trellis 7"(C7r) corresponding to any permutation

Ir of a given (n, k) code C are lower bounded by

Smax(C?r ) > max (k - Ki(C) - K,_-i(C))
- sei0,nl

(9)

emax(C_r) > max (k - Ks-l(C) - Kn-s(C))
- _e[1,nl

(lO)

rt

_(CTr) >_ Z max{0, k - Ks(C) - Kn-s(C)}
S=0

(11)

,n,

V(C_') > __,qmax{O,k-K,(C)-K.-,(C)} (12)
S=0

n

E(CTr) >_ ___ qmax{O,k-K._, (¢)-K__,(¢)}
S=I

(13)

71

1 Z[K_(C ) _ Ks_l(C,)]qmax{O,k-K,_,(¢)-K,__,(C)}
i(CTr) >_ q S=l

(14)
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The DLP bound, Eq. (9), on state complexity has been derived in [3,11]. 3 Some of the bounds in

Theorem 6 can be improved slightly when ¢ is nondegenerate, because this condition implies that ei _> 1.

The UDLP bound (Theorem 5) leads to similar lower bounds on trellis complexity that apply to all
codes with given code parameters.

Theorem 7. The complexity measures for the minimal trellis 7"(C) representing any (n, k, d, d ±) code
C are lower bounded by

Smax(C) >_ max [k--K_(n,k,d,d±)--Kn__(n,k,d,d±)]
,e[0,nl

(15)

emax(C ) _ max [k-Ki_l(n,k,d,d ±) -Kn__(n,k,d,d±)]
ie[1,n]

(16)

¢(C) > __max {O,k- K__l(n,k,d,d ±) - Kn_i(n,k,d,d±)}
i=1

(17)

n

v(c) > y_ qmaX{°'k--e'('_'k'e'el)--_"-'(",k,d,e±)}
i=0

(18)

E(C) >_ _ qmax{0,k-'K,_x (n, k,d,d ± )--K. _, (n,k,d,d±)}
i=l

(19)

1 _ [_ (n, k, d,d±) - Ki-1 (n, k, d,d±)]qmaX{0,k-'K,_a (n,k,d,d±)-'-K,,_, (n,k,d,d±)}
M(C) >__ ,=, (20)

Finally, the LDLP bounds, Eqs. (7) and (8), lead immediately to simple explicit upper bounds on the
various complexity measures that apply to all codes with a given length and dimension.

Theorem 8. The complexity measures for the minimal trellis 7"(C) corresponding to any (n, k) code
C are upper bounded by

Smax(C) <_ min(k,n - k) (21)

em_(C) < nfin(k,n- k + 1) (22)

¢(C) < k(n - k + 1) (23)

V(C) < [n + q + l ] 2_ q_---_ - 2 min(k, n - k) qmin(k,n-k) _ --q__ (24)

3 A. Lafourcade and A. Vardy, "Lower Bounds on Trellis Complexity of Block Codes," submitted to IEEE Trans. Inform.

Theory.
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s(c)_<[,,÷q-12--q-q_2rain(*,,,-k÷1)] (25)

M(C) -< [__ 1 + max(O, 2k - n)] qmi,(_,n-k) q-ll (26)

The inequality, Eq. (21), is the well-known Wolf bound [13]. Note that Eqs. (2) through (4) are tighter

than Eqs. (23) through (25), except when Eqs. (21) and (22) are met with equality, in which case the

bounds are the same.

III. Best and Worst Trellises

A. Uniform Comparability

In general, to determine which of two minimal trellises is less complex, we must first choose the relevant

complexity measure. However, in some cases, one trellis may be simpler than another at every stage and

depth with respect to all of the complexity measures simultaneously.

Definition 2. For two (n, k) codes C1,C2 having minimal trellises T(C1) and T(C2), we say that

T(C1) _ "T(C2) if pi(C1) >_ pi(C2) and fi(C1) > fi(C2) for all i. If either T(C1) -<_T(C2) or T(C2) -< T(C1),
then the two trellises are uniformly comparable.

The binary relation -< defines a partial ordering on any set of codes with the same length and dimension.

If T(C]) -< T(C2) and T(C2) _-<T(C1), then the two minimal trellises have equivalent complexity, though

they may not have the same structure.

Note that if 7"(C1) __ T(C2), then at every depth and stage, T(C1) has no more vertices or edges

than T(C2), but the converse is not necessarily true. We define comparability in terms of past and
future dimensions rather than edge and vertex dimensions because this gives a closer connection to the

dimension/length profiles.

Theorem 9. If 7"(C1) __ T(C2), then all of the following trellis complexity measures for C1 are upper

bounded by those for C2:

(1) Maximum state complexity: Smax(C1) < 8max(C2)

(2) Total span lengths: E(C1) __<_(C2), v(C1) <_ v(C2)

(3) Total vertices: V(C1) <_ V(C2)

(4) Total edges: E(C1) < E(C2)

(5) Total number of path mergers: M(C1) <_ M(C2)

If two minimal trellises are not uniformly comparable, then the choice of the less complex trellis may

depend on which of the complexity measures is used as the criterion.

Uniform comparability is a very strong property that is not guaranteed to exist between any two
trellises. Our motivation for defining it and studying its consequences lies in the correspondingly strong

results obtained for the problem of finding a minimal trellis in the first place, i.e., finding the least complex

trellis that represents a fixed permutation of a fixed code. As shown by McEliece, 4 the minimal trellis is

uniformly less complex at every stage and depth than any other trellis that represents the code.

4 R. J. McEliece, "On The BCJR Trellis for Linear Block Codes," submitted to IEEE Trans. Inform. Theory.
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We define four categories of best and worst minimal trellises based on uniform comparability:

Definition 3. For a fixed code C, a permutation 7r* and the corresponding minimal trellis T(CTr*) are

(1) Uniformly efficient if T(CTr*) __ T(CTr) for all 7r C Sn

(2) Uniformly inefficient if T(CTr) __ T(CTr*) for all 7r E Sn

Definition 4. An (n, k, d, d ±) code C* and its corresponding minimal trellis T(C*) is

(2) Uniformly concise if T(C*) -'< T(C) for all (n, k, d, d ±) codes C

(2) Uniformly full if T(C) __ T(C*) for all (n, k) codes C

If a minimal trellis is uniformly efficient or uniformly concise, we can drop the qualifier "minimal"

and refer to it simply as a uniformly efficient trellis or a uniformly concise trellis, respectively. As shown

later in Theorem 17, the two worst-case categories, uniformly inefficient and uniformly full, turn out to
be equivalent.

The inclusion of d ± in the above definition elucidates symmetries that are hidden by consideration of

only n, k, and d. First, it preserves duality relationships, as we shall see below in Theorem 10. Second,

from a practical point of view, d and d± have symmetric impact on the potential trellis complexity. There

also appears to be a deep connection between d and d ± for good codes: Often when d is large, d ± must

also be large, e.g., the extended Hamming codes and maximum distance separable (MDS) codes.

A direct consequence of [6, Theorem 1] is that uniform comparability of codes and their duals are

equivalent:

Theorem 10. _t-(Cl) "_ _r'(C2) if and only if T(C_) -'<"T(C2_). Consequently,

(1) A permutation 7r* is uniformly efficient for C if and only if 7r* is uniformly efficient for
C ± .

(2) A permutation 7r* is uniformly inefficient for C if and only if 7r* is uniformly inefficient

for C ± [4, Theorem 1].

(3) C* is uniformly concise if and only if C*± is uniformly concise.

(4) C* is uniformly full if and only if C*± is uniformly full.

In the next sections, we show that the trellis complexity bounds derived in Section II.E are met exactly
for the four categories of extremal minimal trellises.

B. Best Permutations

The following theorem shows that uniformly efficient trellises are those that achieve the DLP bounds

in Eqs. (5), (6), and Theorem 6 with equality.

Theorem 11. A permutation 7r* is uniformly efficient for a nondegenerate code C if and only if CTr*

meets the DLP bounds, Eqs. (5) and (6), with equality, i.e.,

p_(Czr*) = K,(C) and fi(CTr*) = Kn-_(C) for all i.

This guarantees that CTr* meets all of the lower bounds on complexity, Eqs. (9) through (14), with equality.

Conversely, if Cr* meets any one of the lower bounds, Eqs. (11) through (13), with equality, then 7r* is a
uniformly efficient permutation for C.
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Theorem 11 shows that uniformly efficient permutations, which are defined in terms of trellis compa-

rability, turn out to be the same as "efficient" [3] or "strictly optimum" [4] orderings, which were defined
in terms of the DLP bounds. Note that a code may not have a permutation that meets these conditions.

A uniformly efficient permutation, if it exists, is not unique: If 7r* is uniformly efficient for C, then so
is the reverse of rr*, and in fact the number of uniformly efficient permutations must be at least as large

as the automorphism group of the code. There may also be different permutations that are uniformly

efficient and produce distinct MSGMs for the code.

Even though uniform efficiency is a very strong property to require of a trellis, there are many codes

that have uniformly efficient permutations. For example, the standard permutation of any Reed-Muller

code is uniformly efficient [4, Theorem 2]. Additional examples of uniformly efficient codes are given in

Section III.C, which lists trellises that are both uniformly efficient and uniformly concise.

We now give some theoretical results that impose necessary conditions on uniformly efficient permu-

tations.

Theorem 12. Suppose C is a code that has some uniformly efficient permutation 7r*. Then for any

i,3 such that i +j <_ n,

K,+j(C) > K (C) + Kj(C)

Theorem 13. If 7r* is a uniformly efficient permutation for an (n, k, d, d ±) code C, then CTr* contains

codewords of the form xdo n-d, on-dx d, and C±rr * contains codewords of the form xd±o n-d± , on-d±xd±,

where 0j denotes j consecutive zeros, and X j denotes some sequence of j nonzero symbols from GF(q).

Corollary 1.

min(d, d ±) must

If C is a binary (n, k, d, d ±) code that has some uniformly efficient permutation rr*, then

be even.

By Corollary 1, the (23,12,7,8) Golay code has no uniformly efficient permutation; neither does the

(2 'n - 1,2 .... m - 1,3, 2m-l) Hamming code for any m > 3. Consequently, no nontrivial perfect binary

linear code has a uniformly efficient permutation.

Although many codes lack uniformly efficient permutations, there may be some permutation that

simultaneously minimizes all of the trellis complexity measures. For example, the (7,4) Hamming code is

sufficiently small that we can verify by exhaustive search that there are permutations that are optimal

with respect to all of the complexity measures despite not being uniformly efficient.

For self-dual codes, [6, Theorem 3] tells us that there is always a single permutation that simultaneously
minimizes E, V, and M. We suspect that not every code has a permutation that simultaneously minimizes

all of the complexity measures, though we do not yet know of an example that confirms this conjecture.

C. Best Codes

Uniformly concise codes are optimum in a rather strong sense. Not only do they have an efficient

permutation, but they also minimize all of the trellis complexity measures compared to all codes with the

same parameters. The following theorem shows that codes that achieve the bounds in Theorems 5 and 7

with equality are uniformly concise.

Theorem 14. An (n, k, d,d ±) code C* is uniformly concise if the dimensions of its past and future

subcodes meet the bounds in Theorem 5 with equality, i.e.,

pi(C') = -Ki(n,k,d,d ±) and fi(C*) = -K,_-i(n,k,d,d z) for all i
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In this case, C* meets all of the lower bounds on complexity, Eqs. (15) through (20), with equality.

Conversely, if T(C*) meets any of the bounds of Eqs. (17) through (19) with equality, then C* is uniformly
concise.

Table 1 lists known uniformly concise binary codes. In each case, the complexity values listed are the
lowest possible for any code with the same parameters. From Theorem 10, the dual of each code is also

uniformly concise. Generator matrices for many of these codes are given in Kiely et al. 5 All of the rate

1/2 codes in the table are either self-dual or have duals that are permuted versions of the original code.

Theorem 15. All (2 m, m + 1,2m-1,4) first-order Reed-Muller codes and their duals, the (2m,2 m
-m- 1, 4, 2m-l) extended Hamming codes, are uniformly concise.

There are also examples of code parameters (n,k,d,d ±) for which no uniformly concise trellis can

exist. The TO(r, m) Reed-Muller codes when (m = 6, r = 2, 3), (m = 7, r = 2, 3, 4) are codes that do

not meet the UDLP bounds. This is established by comparing the UDLP bounds to the known optimal
permutations for the Reed-Muller codes.

Results such as the examples above and Theorems 12 and 13 illustrate that in many instances the

UDLP bounds on complexity are not tight. An area of further research is to produce tighter bounds on

trellis complexity based on the code parameters (n, k, d, d-k).

D. Worst Minimal Trellises

The following theorems show that uniformly inefficient and uniformly full minimal trellises are the

same as the trellises that achieve the LDLP bounds with equality.

Theorem 16. An (n, k) code C is uniformly full if and only if the dimensions of the past and future
subcodes of C meet the bounds of Eqs. (7) and (8) with equality, i.e.,

p_(C) = max(0, k - n + i) and f_(C) = max(0, k - i) for all i

In this case, C meets all of the upper bounds on complexity, Eqs. (21) through (26), with equality.

Conversely, if C meets any one of the upper bounds, Eqs. (23) through (25), with equality, then C is
uniformly full.

Theorem 17. A minimal trellis T(Crr*) is uniformly full if and only if 7r* is a uniformly inefficient
permutation of C.

Many codes have uniformly inefficient trellises in their standard permutations. For example, the

minimal trellises for all cyclic, extended cyclic, and shortened cyclic codes are uniformly ineffÉcient [5,7].
However, not every code has a uniformly inefficient permutation.

Additional examples of codes with uniformly inefficient trellises are given in the following two theorems.

Theorem 18. A self-dual code always has a uniformly inefficient permutation.

Theorem 19. If and only if a code is maximum distance separable (MDS), every permutation rr

is uniformly inefficient and the corresponding trellis complexity measures equal the upper bounds in
Eqs. (21) through (26).

5Kiely et al., op cit.
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Table 1. Some known uniformly concise binary codes, a

Code (parameters) E V M Smax ernax z

Minimal span codes b

(d-I- (k - 1) [-_] ,k,d, 2) 2kd 2 ÷ 2k(d- 1) 2k - 1 min(2, 2 kd

d- 2}

Dual 4k(d- 2) + 4 2 + 2k(d- 1) 2k(d - 3) + 3 2 2 k(d - 2) +n

Reed-Muller c 7_(1,rn) (22m+1 + 24)/3 (22m+l + 24)/3 3(2 m-l) - 1 m m (m - 1)2"*

(2 m, 1 + m,2 m-l,4) -4 -3(2 m-l) - 2 +2

Extended Hamming (22m+2 + 25)/3 (22m+ 1 + 24)/3 (22m+l + 24)/3 m m + 1 rn(2 m - 2)

Dual -4 -- 3(2 re+l) --3(2 m-l) -- 2 --9(2 m-l) -- 1

Extended Golay G24

(24, 12, 8, 8) self-dual 3580 2686 895 9 9 136

Reed-Muller "/_(2, 6)

(32, 16, 8, 8) self-dual 6396 4798 1599 9 9 202

Quadratic residue

(48, 24, 12, 12) self-dual 860156 645118 115039 16 16 502

(10, 5, 4, 4) d 60 46 15 3 3 24

Formally self-dual

(12, 6, 4, 4) d 76 58 19 3 3 30

Formally self-dual

(16, 4, 8, 2) d 88 78 11 3 3 36

Dual 132 78 55 3 4 44

(20, 6, 8, 4) d 236 206 31 4 4 66

Dual 348 206 143 4 5 74

(24, 7, 8, 4) d 300 262 39 4 4 82
Dual 444 262 183 4 5 92

(24, 8, 8, 4) d 364 302 63 5 5 86
Dual 476 302 175 5 5 94

(40, 7, 16, 4) d 940 878 63 5 5 170

Dual 1628 878 751 5 6 196

T_(I,3) (9 T_(1, 3)

(16, 8, 4, 4) self-dual 88 67 22 3 3 36

_24 • _24

(48, 24, 8, 8) self-dual 7160 5371 1790 9 9 272

a Codes are grouped with their duals, which are also uniformly concise.

bd>2, k<3.
cComplex_y expressions for first-order Reed-Muller and extended Hamming codes are valid for m > 3,

except emax = 3 when rn = 3.

d See Kiely et hi., op cit.

This theorem follows from the fact that a code is MDS if and only if every subset of k columns of its

generator matrix is linearly independent. A peculiar consequence of Theorem 19 is that every permutation

of an MDS code is also uniformly efficient, as noted by Forney [3]. This observation emphasizes that

uniform efficiency is only a relative measure of trellis complexity.

IV. Conclusion

In this article, we extended the analysis of [6] to consider permutations of a code that minimize the

complexity of a trellis representation that can be used for encoding or decoding. The analysis for a fixed

code generalizes naturally to similar results for codes allowed to vary over a domain of optimization.
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We identified two useful domains, the set of permutations of a given code and the set of all codes with

given code parameters. Within each domain, we defined uniformly best and worst minimal trellises that

are guaranteed to simultaneously minimize or maximize all of the complexity measures. We showed

that it is easy to generalize the bounds on maximum state complexity derived by other authors from the

dimension/length profile of a code to similar bounds on all the complexity measures over each optimization

domain. Furthermore, if a minimal trellis attains the bounds for some of the complexity measures, it
must necessarily be uniformly extremal, but this is not true for the simpler measures of maximum state or

edge dimension considered by other authors. This lends further credence to the argument that a measure

of total complexity (such as the total number of edges) is more useful than a measure of maximum
complexity [10]. 6

Unlike the case of a fixed permutation of a given code, uniformly best and worst minimal trellises

are not guaranteed to exist within the larger domains of optimization. However, we demonstrated the

usefulness of the concepts by presenting several examples of uniformly best trellises, most notably the

optimum permutation of the (48,24) quadratic residue code [2], heretofore unknown. Conversely, by

deriving some necessary existence conditions, we also identified some cases for which uniformly extremal
minimal trellises cannot exist.

We showed that the useful relationships between the trellis complexity of a code and that of its dual

developed in [6] extend naturally to optimizations over larger code domains. This approach yields many of

the same results obtained by other authors for dimension/length profiles or generalized Hamming weights,
but it emphasizes that all the duality results stem from fundamental minimal trellis relationships valid

for a fixed permutation of a code. In fact, we have argued that the symmetry of the constraints imposed
by the code and its dual on trellis complexity is so fundamental that the minimum distance of the dual

code should be included as one of the intrinsic code parameters that limits achievable complexity.
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Three techniques that use carrier information from multiple antennas to enhance

carrier acquisition and tracking are presented. These techniques in combination

with baseband combining are analyzed and simulated for residual and suppressed-

carrier modulation. It is shown that the carrier arraying using a single carrier loop

technique can acquire and track the carrier even when any single antenna in the

array cannot do so by itself. The carrier aiding and carrier arraying using multiple

carrier loop techniques, on the other hand, are shown to lock on the carrier only

when one of the array elements has sufficient margin to acquire the carrier on its
own.

I. Introduction

Combining or arraying signals from multiple antennas has the advantage of increasing the signal-

to-noise ratio (SNR) of the received signal. For example, it is well known [1] that ideally the SNR of

the combined signal is the sum of the SNRs corresponding to the individual antennas. Practically, the

achievable gain depends on the type of scheme being implemented as well as on the characteristics of the

received signal. This article is mainly concerned with three similar techniques that first use information

from multiple antennas to acquire and track the carrier, and then use baseband combining (BBC) [2]

on the carrier demodulated signals to demodulate the subcarrier and detect the symbols. The three

techniques, which work in conjunction with BBC, are carrier arraying using a single carrier loop, carrier

arraying using multiple carrier loops, and carrier aiding. As will be shown shortly, the second and third

techniques are usable for both residual and suppressed-carrier modulation. The carrier arraying with a

single carrier loop followed by the baseband combining technique, however, is not practical for suppressed-

carrier modulation. Practical implementations that demodulate an arrayed suppressed-carrier signal

using a single carrier loop are the full-spectrum combining and/or complex symbol combining techniques
described in [3].

The main difference between the techniques under consideration is that the first, carrier arraying using

a single carrier loop, does not require any single antenna in the array to acquire and track the carrier by

itself. The other two techniques, on the other hand, require at least one antenna in the array to lock the

carrier on its own. The use of these techniques is best illustrated through an example. Consider an array

of one 70-m and two standard (STD) 34-m antennas operating at S-band frequencies (2.2-2.3 GHz) [4].

A typical radio frequency spectrum of the received signal is shown in Fig. 1 in the absence of noise.
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Fig. 1. PCM/PSK/PM square-.wavesubcarrier signal modal.

Assume that PT/No, the ratio of the total received power to the one-sided noise power spectral density

(PSD) level, at the 70-m is 15 dB-Hz; the modulation index is 58 deg, and the symbol rate is 20 symbols

per second (sps). Then, since the ratio of PT/No at the STD 34-m to that at the 70-m is "y = 0.17 [1],

the (PT/No)34-,n = 7.3 dB-Hz. (The ratios of PT/No of typical 34-m antennas in the DSN to the PT/No
of the 70-m are shown in Table 1.) The corresponding Pc/No are 9.5 dB-Hz for the 70-m and 1.8 dB-Hz

for the 34-m. For this scenario, suppose that the minimum bandwidth required to track the carrier is

1 Hz, and the minimum loop SNR needed to reliably track the residual carrier is 7 dB [5]. Then the
70-m antenna with a carrier loop SNR of 9.5 dB can acquire the carrier, but the two 34-m antennas with

loop SNRs of 1.8 dB are unable to do so. Applying the techniques described in this article, however, still
enables us to make use of the information at the smaller antennas.

Table 1. Gamma factors for DSN antennas.

Antenna size Frequency band 3'i

70-m S-band 1.00

34-m STD S-band 0.17

34-m HEF S-band 0.07

70-m X-band 1.00

34-m STD X-band 0.13

34-m HEF X-band 0.26

Let us discuss the techniques one at a time. Carrier aiding is shown in Fig. 2. Here the 70-m (or master)

antenna in the array first locks the carrier and then passes its reference to the other (34-m) antennas. At

the 34-m antenna, the received signal is first delayed to time align it with the 70-m signal, then open-loop
downconverted to baseband using the 70-m reference, and subsequently coherently demodulated using a

baseband phase-locked loop (PLL). (Note that we arbitrarily assume the signal at the 34-m antenna to be

delayed relative to the 70-m antenna.) When the antennas in the array are colocated, the baseband PLLs

can operate at bandwidths much narrower than otherwise possible, because most of the signal dynamics
are removed by the master reference signal in the downconversion to baseband. In the case of the example

given, the baseband PLL would be able to use a bandwidth much narrower than 1 Hz, because it must

only track the residual Doppler between the 70-m antenna and 34-m antennas. The narrow bandwidth
results in an increased loop SNR, which allows the 34-m antennas to lock the carrier. In this example,

if the modulation index were changed to 90 deg so that the carrier is fully suppressed, the technique in

Fig. 2 could still be used by using a Costas loop instead of a PLL to track the carrier.

Note that carrier aiding is only useful when at least one antenna is able to acquire the carrier on its

own. If this requirement is not met, a different technique, such as carrier arraying using a single carrier

loop, is needed. We begin with the implementation shown in Fig. 3. Here the time-aligned residual carrier
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component at each antenna is filtered and transmitted to a central location, phase aligned, combined, and

input to a single carrier loop. As a result, for a given bandwidth, the loop will lock the carrier provided the

combined signal has sufficient Pc/No. Ideally, the combined Pc/No is the sum of Pc/No at the individual

antennas. Consider the same scenario as before but with the 70-m antenna replaced by two additional

34-m STD antennas. Under this scenario, carrier aiding cannot be implemented using a 1-Hz loop, as

none of the four 34-m antennas has sufficient Pc/No to lock the carrier. However, carrier arraying using

a single PLL with a 1-Hz bandwidth can be implemented since the combined Pc/No of the four 34-m

antennas is 7.8 dB-Hz. When there is no residual component at f = fc in Fig. 1, the implementation

shown in Fig. 3 cannot be used without modification. The simplest way to handle this case would be to

widen the bandwidth of the bandpass filter (BPF) in Fig. 3 so that it passes the first N harmonics of

the telemetry signal. The harmonics from each antenna would then be transmitted to a central location,

aligned, combined, and tracked by replacing the PLL in Fig. 3 with a Costas loop. Note that the modified

implementation is impractical because it requires the signal to be combined twice: first, as just described,

for carrier tracking and then for baseband demodulation. A more practical implementation along these

lines is full-spectrum combining (FSC) [3], where the signal is combined at IF and then tracked using a

single receiver. An altogether different approach that also uses a single carrier loop but multiple subcarrier
and symbol loops is complex symbol combining (CSC) [3].

Finally, we turn to the carrier-arraying with multiple PLLs technique shown in Fig. 4. As will shortly

be shown, this technique can be viewed as a hybrid of the techniques in Figs. 2 and 3. Here, as in

Fig. 2, the received signal at each antenna (except the master) is first downconverted to baseband using

the master antenna carrier reference and coherently tracked using a baseband PLL. As before, due to

rate aiding by the master, the baseband PLL operates at narrower bandwidths and a higher loop SNR than
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in the absence of rate aiding. However, now the master antenna also benefits, because the error signal

from each of the other antennas is added to its error signal. Hence, when all the loops are tracking, the

master PLL also operates at a loop SNR that is improved. In the upper limit, when all the error signals

add coherently, the loop SNR of the master is equal to the ideal loop SNR of the carrier-arraying with

the single PLL technique in Fig. 3. In practice, we can expect the performance of this scheme to be

better than carrier aiding but not as good as carrier-arraying with a single PLL. Note that if the master

cannot acquire the signal on its own, it cannot rate aid the other antennas, and this scheme is unusable.

In the examples considered earlier, this technique would work well for an array of one 70-m and two STD

34-m antennas, but would not be implementable for an array of four STD 34-m antennas that cannot

lock individually. This scheme can be used for suppressed-carrier modulation by replacing the PLL with

the Costas loop.

In this article, the tracking performance of all three techniques is measured in terms of SNR degradation

and symbol SNR loss. Both performance measures have been explained in detail earlier [3]. Briefly, SNR

degradation is defined as the ratio of the SNR at the matched filter output in the presence of nonideal

synchronization to the SNR in the presence of ideal synchronization. Symbol SNR loss is defined as

the additional symbol SNR needed by a system with synchronization errors to achieve the same symbol

error rate (SER) as one with no synchronization errors. In the following sections, analytical expressions

are derived to describe the performances of carrier arraying using a single PLL and carrier aiding. The

performances of these systems were also obtained via simulations and seen to agree closely with the

theory. Performance for carrier arraying using multiple PLLs is obtained via simulation only.
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II. Single Receiver Performance

We begin with the performance of a single receiver, as it is the basis for the analysis of the schemes
in Figs. 1 through 3. In deep-space communications, the downlink symbols are first modulated onto

a square-wave subcarrier that, in turn, modulates an RF carrier [6]. As shown in Fig. 1, this has the
advantage of transmitting a residual carrier component whose frequency does not coincide with the data

spectrum. In general, the downlink deep-space signal can be represented as [6]

r(t) = 2X/_T sin [w_t + 5 d(t) Sqr(w_ct + Os_) + Oc] + n(t) (1)

where PT is the total received power in watts (W), and wc and/9c are the carrier angular frequency in

radians per second (tad/s) and phase in tad, respectively. The Sqr(wsct + tgsc) = sgn(sin(wsct + tgsc)) is
the square-wave subcarrier with angular frequency wsc rad/s and phase Osc tad. The signum function

sgn (x) equals +1 when its argument is positive and -1 otherwise. The modulation index, 6, ranges from

0 to 7r/2. The carrier power Pc = PT cos 2 6, and the data power PD = PT sin 2 6. When $ = r/2, the
signal is "suppressed-carrier" modulated. In this case, the downlink signal spectrum is as given in Fig. 1,

but without the residual carrier at f_. The symbol stream, d(t), is given by

oo

d(t) = E dkp(t - kT) (2)
k=-cx_

where dk is the 5=1 binary data for the kth symbol and T is the symbol period in seconds. The baseband

pulse, p(t), is unity in [0,T) and zero otherwise. The bandpass noise, n(t), can be written as

n(t) = x/2nc(t) cos(wct) - v_ns(t) sin(wet) (3)

where nc(t) and ns(t) are statistically independent, stationary, band-limited, white Gaussian low-pass

noise processes with one-sided PSD level No (W/Hz) and one-sided bandwidth W_ (Hz).

As shown in Fig. 5, the deep-space signal is demodulated using a receiving chain consisting of a carrier-

tracking loop, a subcarrier-tracking loop, and a symbol-synchronizer loop. If 6 < 7r/2, a PLL is used for

carrier tracking. When 5 = rr/2, however, carrier tracking is achieved using a Costas loop. Computation

of the degradation and loss begins with the expression for the soft symbols, vk, in Fig. 5. From [1,6],

vk = VZPDDC_C_¢ 1 -- I u___lldk + nk dk _ dk-1 (4)

2 No/(2T). The signal reduction functions Cc and Cscwhere the noise nk is Gaussian with variance a n =

are due to imperfect carrier and subcarrier synchronization and are given as [1,6]

Cc = cos¢_ (5)

C,_ = 1 - 21¢s_I (6)
7r

where ¢c and ¢8¢ denote the carrier and subcarrier phase tracking errors, respectively. The symbol timing

error, Csu, which affects the output only when there is a symbol transition (i.e., when dk y& dk+l), reduces
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the signal amplitude by 1 - (lCs_l/_). Ideally, ¢c = ¢8c = Csv = 0 and Eq. (4) reduces to the familiar

matched filter output vk,ideai = v_dk -t- nk, as expected. In writing Eq. (4), it is assumed that the

carrier, subcarrier, and symbol loop bandwidths are much smaller than the symbol rate so that the phase

errors ¢c, Csc, and ¢8u can be modeled as constant over several symbols.

Throughout this article, the density function of ¢c is assumed to be Tikhonov, 1 that is,

exp(pc cos ¢c)

2_-So(pc) I¢cl<
Pc(Co) = exp((1/4)pc cos 2¢c) 7r

rGo((1/4)pc) led <
0 otherwise

residual-carrier case

suppressed-carrier case
(7)

where Ik(z) = 1/Trf o e_C°S°cos(kO) dO is the modified Bessel function of order k, and Pc is the carrier
loop SNR. From [7],

Pc�No

- Bc

( ,)_1P_= Po/Yo 1+
Bc 2E2/No

residual-carrier case

suppressed-carrier case

(s)

where the symbol SNR Es/No = PoT�No and Bc Hz is the carrier loop bandwidth. The subcarrier and

symbol densities, p8c(¢8c) and Psu(¢su), are assumed to be Ganssian. Hence,

exp(-¢2/2a 2)
p,(¢0 = _ , i = sc,sy (9)

2 is the reciprocal of the symbol loopwhere a_c is the reciprocal of the subcarrier loop SNR, P_c, and asy

SNR, p_u. The subcarrier [7] and symbol [8] loop SNRs are respectively given as

P,c = W_cB,c 1 + 2E,/-'_-_o

P_/No
Psy - 21r2WsvB_v

(eft (_) -(Wsy/(2v/-_))v/-_8/Noexp(-(Es/No))) 2 (11)

x (1+ (Es/No)(W.v/2)- (Wsv/2)[(1/v/_)exp(-(Es/No))+ v/-E_-Noo err (V/-_-ZNoo)] 2)

z It is assumed that the Costas loop locks at zero phase error. The w lock point can be handled by an appropriate

transformation [6].
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where erf(x) : (2/s/-_) fo exp(-v2) dv is the error function, and Bsc and Bs_ (in Hz) denote the single-

sided subcarrier and symbol loop bandwidths, respectively. The parameters Wsc and Ws_, which denote

the subcarrier and symbol window, are unitless and limited to (0, 1].

A useful quantity needed to compute degradation and loss is the symbol SNR conditioned on ¢c, ¢_c,

and ¢_y. The conditional symbol SNR, denoted by SSNR', is defined as the square of the conditional

mean of vk divided by the conditional variance of vk, i.e.,

SSNR' = (vk/¢c, ¢_, Csy)2

2POT _2_2

---_-o _'CC;sc dk = dk-1

_-_u;c 1 dk # dk-1

(12)

2
where (x/y) denotes the statistical expectation of x conditioned on y, and Vk and an are defined earlier.

A. Degradation

The symbol SNR degradation is defined as the symbol SNR at the matched filter output in the presence

of imperfect synchronization divided by the ideal matched filter output SNR. The nonideal symbol SNR,

denoted as SSNR, is found by first averaging Eq. (12) over the symbol transition probability and then

over the carrier, subcarrier, and symbol phases. It can be shown that [1]

2PoT
SSNR- No Cg C_c C_ (13)

where the signal amplitude reduction due to symbol timing errors is denoted Csy and given as

2=

for a transition probability of one-half. The average of the signal reduction functions is [1]

1 [ I2(p_)] residual-carrier case

-_c = -_ 1 + Io(Pc) 3 (15)

-21[1 + Io((1/4)pc) jIl((1/4)pc)] suppressed-carrier case

62 = 1- _3/_____1 ____41 (16)
VT_ o

(17)
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Ideally, when there are no phase errors (i.e., when Pc = P,c = Psu = oo), C 2 = C_c -- C_v = 1 and

Eq. (13) reduces to SSNR_deal = 2PDT/No, as expected. The degradation, D, for a single antenna is

thus given by

( SSNR ) =logloC2C2 cC2 uD = 10 loglo \ S_at

Note that the degradation defined in this way is a negative number.

B. Loss

The SER for the single receiver in Fig. 5, denoted Ps(E), is defined as [2,3]

Ps(E) = / f / P_(E)Pc(¢c)P_c(¢sc)Psu(¢s_)d¢_udCscd¢c=f

(18)

(19)

where

oo

2 f exp(_v2)dverfc (z) =
= 1 - erf(x) (21)

is the complementary error function. Substituting Eq. (12) for SSNR' in Eq. (20) yields

P_(E) = _ erfc CcCsc 1 I¢___._] + _ erfc CcCs¢ (22)

Ideally, when there are no timing errors, Eq. (19) reduces to the well-known binary phase shift keyed

(BPSK) error rate, Ps(E) = 1/2 erfc (X/_s/No).

Symbol SNR loss is defined as the additional symbol SNR needed in the presence of imperfect syn-
chronization to achieve the same SER as in the presence of perfect synchronization. Mathematically, the

SNR loss due to imperfect carrier, subcarrier, and symbol timing references is given in dB as

L = 20log [f-l(Ps(E))] I,,.,,.,te ,oopsteal - 20log [f-l(ps(E))] I(,,.,t. ,oopsN.l (23)

where f(.) and Ps(E) are as defined by Eq. (19). The first term in Eq. (23) is the value of Es/No required
at a given value of Ps(E) in the presence of perfect synchronization, whereas the second term is the value

of E,/No required for imperfect synchronization. Note that loss defined in this way is a negative number.
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1 (_/SSNR' when dk dk-1)1 (v/SSNR ' when dk # dk-1) +_ erfc =P_(E) = -_ erfc
(20)

where f(') is the functional relationship between SER and V/-_-_/No . The quantity P_(E) is the SER
conditioned on the phase errors ¢c, ¢8c, and Csy- Following similar steps as in [9], the conditional SER

can be shown to be



III. Carrier Array Using a Single PLL

Carrier arraying using a single PLL followed by BBC is shown in Fig. 3. This scheme is similar to

the single receiver in that signal demodulation uses a single PLL, subcarrier loop, and symbol loop. Two

main differences, however, are (1) the IF residual carrier signals are combined so that the PLL operates

at a higher loop SNR than in the single receiver case, and (2) after carrier demodulation, the baseband

signals are also combined so the subcarrier and symbols operate at a higher loop SNR as well.

Due to different path lengths, the received signal at antenna i is delayed by Ti S relative to

antenna 1. After complex downconversion to an appropriate IF, the signal at antenna i can be rep-
resented as [1]

ri(t) = rl(t- vi)

= X/_-_-, exp {j [wit - o)cTil -_-5d(t - ri) Sqr[wsc(t - Ti) + 0sc,] + Oc,]}

+ n_(t) exp {j [wit + 0c,]} (24)

where for an L-antenna array, i = 1,2,..., L. The carrier phase of the ith signal is Oc,(t) = Oc_(t) +A0i(t)

where A_i represents the differential Doppler between the signal i and the signal 1. (Antenna 1 has

arbitrarily been chosen as the reference antenna.) All other parameters in Eq. (24) are as defined in

Eq. (1), except for wl, which denotes the carrier IF frequency. Here the noise hi(t) is a complex noise

process with a one-sided PSD level equal to 2N0 (W/Hz). As shown in Fig. 3, each IF signal is first
filtered to extract the carrier component and then transmitted to a central location where it is phase

aligned and combined with carrier signals from other antennas. The phase alignment and combining

algorithms are shown in Figs. 6 and 7. Note that the combining algorithm here is almost identical to

that used for the full-spectrum combining technique described in [1,3], the difference being that here the

output of the bandpass filter in Fig. 3 is the residual carrier component, whereas in [1,3] it was the first
N harmonics of the telemetry signal. The filter output, rE, (t) in Fig. 6, is given as

rg_ (t) = V/-_ exp [j(wlt + 0c,)] + nF, (t) exp [j(wlt + t_,)] (25)

for i = 1,..-, L. Here Pc, is the received carrier power at antenna i, and the noise nEd(t) is a complex

bandpass Gaussian noise. The signals rF_ (t) (i 7t 1) are phase aligned with rF_ (t), scaled by the optimum

weighting factors [2,10], _i = (V/_N01)/(v/-_ N0,), and then combined. Combining the carrier signals

in this way maximizes the combining gain [10].

Let _il = A/_, denote the phase difference between signal i and the reference signal before phase
alignment. Then the signal rE, (t) is aligned with the reference tEl(t) by rotating rE, (t) by e -j°'l for

i = 2,...,L. The estimate [11], _1, is obtained using the algorithm in Fig. 7. Denote the phase

alignment error A(_i 1 -- _il - _il' Then the variance of A¢_1 is related to the SNR of the phase difference

estimator by [1,3,11]

1 (26)
°"2¢'1 _ 2 SNRil

where [11]
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SNR,, = 2Tco,,((ec,)/(No,)) (27)
1+ (11_,)+ Bco,,[II((Pc,)/(No,))]

The parameter B¢o,-r denotes the single-sided bandwidth of the BPF in Fig. 3, T¢o_r denotes the estimation

interval, and the ratio yi = (Pc,/Pc1)(Nol/Noi) is called the antenna gamma factor. These ratios are

shown in Table 1 for several DSN antennas operating in S-band or X-band (8.4-8.5 GHz).

The IF carrier signals after phase compensation, denoted Zc, (t) in Fig. 6, are given as
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Zc, (t) = v/-_, ej[_'t+°_(t)+zxt" (t)] + ni(t)eJ[,_,t+o_ (t)'_-A_il (t)] (28)

The combined signal, Zc(t), obtained by taking the weighted sum of Zc, (t) is a complex tone plus noise.

Namely,

L

zc(t) = #,zc,(t) (29)
i=1

Following the same steps as in [1,3], the power of the complex tone in Eq. (29) averaged over A¢i 1 can
be shown to be

L L

Pc....b: pc,E
i=1 j=l

(30)

where Cij, the average signal reduction function due to phase misalignment between the signal i and the

signal j, is given as [1,3]

C_j = f{e-(]/2)_ _,,+,, ,j,.I_ _ I m_n (31)
[ 1 m=n

Similarly, the one-sided PSD level of the combined noise at the carrier loop input is given by [2]

L

2N0.H = 2 No1 _ 7_ (32)
i=1

Referring to Fig. 6, the PLL input is formed by taking the real part of the combined signal Zc(t).
Consequently, the PLL loop SNR is given by

Pc.....b/Noo,,
Pc --

Bc

Pc,/No,
BC _L=I_' i ] (33)

where the bracketed term is the improvement in loop SNR due to arraying.

A. Carrier Demodulation

Since the PLL input is formed by aligning the phase of signals 2 through L with the phase of signal 1,
the PLL reference is tuned to signal 1 and can be used without modification to demodulate the carrier

at antenna 1. Carrier demodulation at antenna i (for i # 1), however, can be performed only after
aligning the phase of the PLL reference to that of the carrier at antenna i. That is, carrier demodulation

at antenna i is performed after rotating the PLL reference by ej_'_. Also note that since the carrier

reference at all antennas is derived from a single carrier loop, the SNR degradation and loss due to
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imperfect carrier synchronization is the same for all antennas. That is, in the telemetry channel, the
carrier signal reduction function for antenna i, denoted by Co,, is given by

Co, = cosec i = 1,2,..-,L (34)

where a_c = 1�pc, and Pc is given by Eq. (33).

Assume that the baseband combiner in Fig. 3 perfectly time aligns the signals before combining

them; 2 then, following the same steps as in [1,11], it can be shown that the combined symbol stream at

the matched filter output can be written as

vk = x/PD, gcombCcCsc 1- dk + nk

dk = dk- 1

(35)
dk ¢ dk-1

where the conditional gain factor, denoted gcomb, is given by

L L L

n=l n=l ,n=l
n_Tn

(36)

2
and the noise nk is a Gaussian random variable with variance a n = NojI/2T. Defining the conditional

symbol SNR as before yields

{ 2PD1T, .-, C2C 2

l'_comb c sc 2

C;comb{Jc _'sc

dk = dk- 1

dk ¢ dk-

(37)

where

L 2 L L

Ccomb= r (as)
En=l "_n

is the degradation due to imperfect phase alignment. The last equation is useful in computing the symbol

SNR degradation and SER loss as shown below.

B. Degradation

The SSNR degradation is defined as the ratio of the SSNR in the presence of imperfect phase alignment

and synchronization to the ideal SSNR (no phase errors). The degradation is obtained by computing the

SSNR in the presence of phase errors (averaging Eq. (37) over A¢il, ¢c, Csc, and ¢,y) and then dividing

= )) )-_i=1%)" Hence,that result by the ideal SSNR (SSNRideal ((2PDIT)/(Nol L

2 This assumption simplifies the analysis without affecting the relative performance of the schemes. Note that the uncom-

bined signals are not assumed to be perfectly phase aligned.
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[ ( L )]D = 1010glo C 2 C_c C_ __L=I ,,/2 + __L=x _,7_ ")'m'YnC,'nn (39)

where Cnm is given by Eq. (31). The quantities C 2, C2c, and C2u are given by Eqs. (15) through (17)

with the modification that the loop SNRs Pc, Psc, and psy presented in Eqs. (8) through (11) are now

computed using the combined power-to-noise level, or Pc/No,If, which is found from Eqs. (30) and (32).

C. Loss

The SER for the array in Fig. 3 is computed using the same procedure as in the single receiver case.

Therefore, the SER is given by averaging the conditional SER over all the phase errors. Assuming that

the phase alignment errors, A¢_1, are independent for i = 1,..-, L we have [3]

r_'jji-:,.,.[ .P_(E) = f-- -- ... p(¢_)p(¢_)p(¢_y) p(ACnl)
,J

L_I

dACdCsudCscd¢c (40)

where A¢= (A¢21,... ' A(_L1) are the resulting L - 1 phase alignment errors. The A¢ are independent

and identically distributed Gaussian random variables with variance given by Eq. (26). The statistics of

the error processes ¢c, ¢_, and ¢_y were described earlier. After substituting Eq. (37) in Eq. (20), the
conditional SER becomes

]1 E_I 1.., I,-- - 4 LVNoI j
(41)

where Esl/NOl = PD1T//Nol is the symbol SNR at antenna 1. Ideally, when there is no combining and

the synchronization errors Ccomb = Cc = Cs_ = 1 - I¢_yl/Tr = 1, the SER given in Eq. (40) reduces to

symbol error rate, Ps(E) = 1/2 erfc (_/EsI/Nol(__L=I "fn)), where (_-_L=I 7n) isthe well known BPSK

the ideal combining gain. The SNR loss is given by Eq. (23) after using Eq. (40) for Ps(E).

D. Numerical Examples

The use of Eqs. (39) and (40) is illustrated here by computing the degradation and loss for the system

in Fig. 3 when L = 2 and 4.

1. Array of One 70-m and One STD 34-m Antenna. Consider again an array of one 70-m

and one STD 34-m antenna operating at S-band. Then from Table 1, with _/1 = 1 and ")'2 = 0.17, the

ideal gain 101ogl0(_l + _f2) = 0.68 dB. The degradation to the ideal gain versus the 70-m symbol SNR

(E_I/Nol) is shown in Fig. 8 for a symbol rate of 200 sps and a modulation index of 70 deg. In Fig. 8,

the degradation for the end-to-end system in Fig. 3 is shown by the solid line and obtained by evaluating

Eq. (23). The degradation due to the individual components is shown by the broken lines. For example,

the degradation due to the carrier loop, shown by the top line (CA) in Fig. 8 is found by assuming that

all the other components in the array have ideal operation, that is, by evaluating Eq. (23) as follows:

D[[sNn,_=p,c=p,,=c_] = 101og10 C 2 (42)
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Fig. 8. SSNR degradation for an array of two different antennae.

The second line from the top (SC) is the degradation due to the carrier and subcarrier, and the

bottom line (SY) is the carrier, subcarrier, and symbol or total degradation. The IF carrier combining

and baseband telemetry combining degradations are not shown individually because they are negligible.

Note that it was shown in [1] that the total degradation in dB is approximately equal to the sum of the

individual degradations. Results obtained by simulating the system in Fig. 3 are indicated by the circles.

SER curves needed to compute the loss are shown in Fig. 9. The bottom curve is the SER assuming an

array with ideal gain (0.68 dB). The SER for nonideal gain, Eq. (40), is shown by the curve in the middle.

Simulation results for a nonideal array are shown as circles. At the top is the nonideal performance for

a single 70-m antenna, Eq. (19). In the example, the conditional SNR, P_(E) in Eq. (40), is given by

Eq. (41) with

C_o_b - .,f2 + ,72 + 2_f1_,__________2c°s(A¢21) (43)

where 3'1 = 1 and 3'2 = 0.17.

The degradation and loss for various SERs are given in Table 2. The second column in the table is

the symbol SNR needed (at antenna 1) for an ideal array to achieve the SER in column 1. The loss

in the third column is the additional SNR needed by a nonideal system to achieve the same SER as

an ideal one. For example, to achieve an SER of 10 -2, an ideal array requires that EsI/Nol = 3.7 dB,

whereas a practical system would require that Esl/Nol = (3.7 + 0.5) dB. The degradation in the fourth

column is the reduction in the ideal SNR gain observed at the matched filter output. For instance, in

our two-antenna example, since the symbol SNR at the 70-m antenna is ideally equal to 3.7 dB, then the

observed or measured combined symbol SNR would be (3.7 + 0.68 - 0.5) dB.

2. Array of Four 34-m Antennas. Analytical and simulation results for the symbol SNR degra-

dation of an array of four 34-m STD antennas (i.e., L = 4 in Fig. 3) are shown in Fig. 10. In this
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Fig. 9. SER for an array of two different antennas.

Table 2. SNR loss versus SSNR degradation (array
of one 34-rn STD and one 70-m antenna).

SER Esl/Nol Loss, dB Degradation, dB

10 -1 -1.5 -1.3 -1.2

10 -2 3.7 -0.5 -0.5

10 -3 6.1 -0.4 -0.4

10 -4 7.7 -0.3 -0.3

case, because all the antennas have the same efficiency and aperture, 7i = 1 for all i. The analytical

degradation is computed as before, using Eq. (39) with Ccomb given by Eq. (38) as follows:

1

Ccomb = 1 + _[cos(A(_21) q-cos(A¢31) + cos(A(_41)

-[- cos(A(_31 - A(_21) -b cos(A(_41 - A(_21) Jr- cos(A(_41 - A¢31) ] (44)

SER for this example is shown in Fig. 11. Curves are obtained for an array with ideal gain (10 log10(4 ) =

6 dB), nonideal gain [Eq. (40)], and a single receiver with nonideal synchronization [EQ. (19)]. Degradation

and loss for various SER values are tabulated in Table 3.

IV. Carrier Aiding

In carrier aiding, the "master antenna" is assumed to lock on the carrier and, subsequently, rate aid the

other antennas. As shown in Fig. 2, the received signal at antenna i = (2,. • •, L) is first downconverted

using the carrier reference from the master antenna and then tracked using a baseband PLL. If we assume

that all the elements in the array are colocated, the ith PLL can operate at much narrower bandwidths
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than in the absence of rate aiding, because it need only track the Doppler dynamics relative to the master

antenna. After carrier demodulation, the signals from each antenna are sent to a central location where

they are time delayed, weighted, combined, and then passed through a chain of subcarrier loop, symbol

loop, and matched filter. Degradation and loss for this scheme are derived as before. However, now the

degradation and loss are a function of the phase error of L carrier loops. Two quantities that are needed

to derive the performance of this system are the loop SNR of the ith carrier loop, Pc,, and the joint

probability density function of the carrier phase errors _c = (¢c_, ¢c2,'", _bcL).



Table 3. SNR loss versus SSNR degradation (array
of four 34-m STD antennas).

SER Esl/Nol Loss, dB Degradation, dB

10 -I -6.9 -1.3 -1.3

10 -2 -1.7 -0.5 -0.5

10 -3 0.77 -0.4 -0.4

10 -4 2.4 -0.35 -0.3

A. Derivations of Pc, and Joint Probability Density Function of ¢c

Since the operation of the master PLL in Fig. 2 is unaffected by the PLLs at the other antennas,

its loop SNR, Pc1, is given by Eq. (8). The aided loop, on the other hand, is directly affected by the

performance of the master PLL, so its loop SNR can be expected to be related to the loop SNR (and

bandwidth) of the master antenna. For residual and suppressed-carrier modulation, the aided-loop loop

SNR, denoted Pc,, is shown in the Appendix, using Fokker-Planck, to be

-1

2_ 1Pc, = Pc_ + 3pc----_ 1 2 3 4'
(4S)

+ 2(,%+ + +  'l.J

where, for residual carrier modulation, P'c, = (Pc,/Noi)/Bc,, and, for suppressed-carrier modulation,

P'c, = (PD,/Noi)/Bc. (1 + (1/2Es,/No,)) -1. The parameter _1i denotes the ratio of the loop bandwidth

and is given by

Be, (46)
_"- Be,

Some insight into the last equation can be given by examining the relationship between the master and

aided loops in the following four cases: (1) Bc. _ oc, Be1 fixed, (2) Be1 ---* O, Bc, fixed, (3) Be, --_ 0, Be1

fixed, and (4) Bcl --_ oo, Be, fixed. Note that cases (3) and (4) are of most interest because, in practice,

Be, << Bc_ and, equivalently, _1i >> 1.

Case (1): In the limit Be, _ co, the loop SNR Pc, --* 0, as expected. Case (2): Recall that in our

model of the IF signals [see Eq. (24)], the phase at antenna i is given by 0i = 01 + A0il, where 01 is the

phase of the master antenna and A0il is the phase at antenna i relative to antenna 1. If the master loop

is tracking, the phase input to the ith loop is ¢cL + A0il, where ¢Cl is the tracking error at antenna 1.

Now suppose that the master loop is tracking 01 perfectly (i.e, ¢Cl --* 0, or alternatively, Pc1 --* oc and

Bc_ --4 0); then intuitively we can expect the master loop not to degrade the tracking performance of the
i

aided loop. Letting Be, --* 0 in Eq. (45), we find that Pc, _ Pc,, which is independent of Pcl. Case (3):

As Be, ---* O, pc, _ Pc_, as shown in Fig. 12 for the case of a 70-m and a 34-m antenna. The broken line

in the figure is obtained by evaluating Eq. (45), whereas the circles represent simulation results for two

PLLs in cascade. One way to view this result is by letting the received phase at both antennas be the

same (i.e., A0il = 0 for i # 1). Then, the input to the second loop is the noise process ¢c_. Intuitively,

we would not expect the second loop to be able to reduce the phase error or noise from the first loop.

Hence, it seems reasonable that even for loop bandwidths approaching zero, the loop SNR of the ith loop

can never be greater than Pc_. Case (4): The limit Bc_ -_ oc implies that loop 1 is not tracking the carrier
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and, therefore, the signal into the cascaded loop is one mixed by an incoherent reference. Hence, in this

case, we can expect the cascaded loop not to track its input either. The inability of the cascaded loop to

track the signal is shown in Fig. 13, where, in the limit, Pc2 approaches zero. From the above cases, we

can conclude that Pc, <- Pc_.
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Next we turn to the derivation of P(¢el, ¢c2,' "', COL), which is needed to determine the SER and loss.

We begin with the derivation of P(¢c,, ¢Cl). Note that, from 0s = 01 + A0sl, it is clear that for i _ 1, 0s

and 01 are not independent. Assuming that P(¢cl) is Thikonov distributed as in Eq. (7), the joint density

P(¢s, ¢1) is derived in the Appendix to be

exp [(as/4)cos [_]L_:r)2I°(as)I°(pcl_¢cl,j(¢c,- _/lS + (pc,/4) cos(2¢c,)]
P(¢cl,_)c,) =

(:r)2Io(_d4)Io(pcl/4)

residual-carrier case

suppressed-carrier case

(47)

where as = pc,/(1 - _/12s),and where the correlation coefficient, r/is, is shown in the Appendix to be

r/ls= Pc, [__ 1+4_1s+3_2_ 1 (48)

Some insight into Eq. (47) can be given by once again considering the extreme cases when Be, -* 0 and

Be, --_ co. We have already seen that when Bcl is fixed and Be, --* co, then Pc, -'_ O. Hence, in this limit,

the loop is unable to track, and we can expect P(¢c,) to be uniformly distributed in the interval [-:r, :r]
for the residual-carrier case and in the interval [-(7r/2), 7r/2] for the suppressed-carrier case, respectively.
It can be shown that

f
lira / p(¢ol, ¢c,)d¢clP(¢c,)[Bc,=oo ---- B¢,-_oo

4)¢1

:r

residual-carrier case

suppressed-carrier case

(49)

for both cases in Eq. (47). Similarly, it can be shown that when Be1 is fixed and Bc, ---*0, the density is

given as

p(¢c,) .o,=0 =
f

lim / p(¢cl, ¢c, )d¢cl
B_ i ---*0 J

d)c I

{ exp[pcl cos(Co,)]

2_I0 (Pc,)
exp[(pcl/4) cos(2¢c, )]

:rio(pc,/4)

residual-carrier case

suppressed-carrier case

(5o)

Notice that the last equation is a function of the master-loop loop SNR Pc,, not Pc,. This is consistent

with our earlier result, where we concluded that the upper limit of the aided-loop loop SNR (i.e., as

Bcs _ 0) is equal to Pc_.
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The joint probability density function (pdf) P(¢c_, ¢c2,'", CoL) is found by applying Bayes Theorem,

namely,

v(¢c,,¢c_,... ,COL)

: p(¢c,)p(¢_I¢_,)p(¢_[cP=,) " "P(¢_ I¢c_)

= p(_l) H L p(¢o,)
/=2

(51)

where p(¢_,) and p(¢¢,, ¢_,) are given by Eqs. (7) and (47), respectively. The last equation simplifies to

its final form because P(¢c,/¢c,) and P(¢c_/¢c, ) are independent for i _ j.

One more quantity needed to describe the performance of carrier aiding is the joint pdf of Cm and Cn

for m _ n and m, n _ 1. We start with the identity

[

p(¢c,n,¢_.) = /

Using Eq. (51) for p(¢c_,¢c,_,¢c,,), we have

(52)

P(¢c,.,¢c_) = / P(¢c"¢cm)P(¢c_'¢C")d¢c_p(¢_,)
(53)

B. Performance of Carrier Aiding

Assuming as before that the time delay for each antenna is perfectly estimated, then following the

same steps as in [1,2], the samples of the combined signal at the output of the matched filter are given by

{v/-P- l(i= l?iCc,)Cscdk+nk (54)

where Co, = cos(Co,), and all other terms are as defined earlier. The symbol SNR conditioned on ¢c,,

Csc, and ¢_y is given from Eq. (12) as

SSNR' =

2PD_T,_ _2
No-'--'_w_ombb'_ dk = dk- 1

2PD, T f, _2 ( __) 2---_Ol t_,cornb_'sc 1 -- dk _ dk-1

(55)

where

(56)
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1. Degradation. Proceeding as in Section III, the SSNR degradation for this case is determined by

averaging Eq. (55) over all the phase errors and then dividing the result with the ideal combined SNR.

Hence,

D = 101oglo CscCsu (__..._Lm=l,,/m) 2

(57)

where C2,, is given by using the appropriate loop SNR in Eq. (15), and C_2cand C2 u are as defined earlier.

The first moment of the joint carrier degradation, Cc,_,c,., is defined as

Cc'-,c-= f / c°s(¢cm)c°s(¢c-)P(¢c'"'¢c-)d¢c"d¢c"

4_c,,4_c,,,

(58)

After substituting Eq. (53) for the joint pdf, we have the following equation that must be computed

numerically:

CCm _" =' / / / COS(¢c'_)COS(¢c") [P(¢_''¢_m)P(¢c''¢_")I d¢c_d¢_"d¢C"P(¢cl) (59)

Ideally, when there are no phase errors (i.e., when Pc, = P_ = P_u = oo), C 2 = C_,.,¢. = C2_ = C 2 = 1Cv,L 3_/

and Eq. (57) becomes zero, as expected.

2. Loss. The carrier-aiding SER for an L antenna array is defined as

(60)

where dee = dec, dec2"" "d¢_L. The conditional SER, P's(E), is obtained by substituting Eq. (55) in

Eq. (20). After some algebra, we have

P's(E)=lerfc F /Eslp _C_c(1 [_-)] + 1 erfclilvoE_.slCcombCsc
(61)

where Esl/Yol =- PD, T/Nol is the symbol SNR at the "master" antenna and C_omb was defined earlier
in Eq. (56). Again, as a check, we note that, when there are no timing errors, Eq. (61) reduces to the well

known BPSK error rate for an ideal array of L antennas, namely, Ps(E) = 1/2 erfc (V/_-_L=I(Esi/Noi)).

/

C. Example: Array of One 70-m and One 34-m Antenna

The degradation and loss for carrier aiding using residual carrier and suppressed-carrier modulation
are presented here for a two-element array of one 70-m antenna and one STD 34-m antenna. As in the

carrier-arraying with a single PLL case, the 70-m antenna is chosen as the reference antenna so _q = 1

and "Y2 -- 0.17. Furthermore, the symbol rate is 200 sps, and the modulation index for the residual carrier

case is 70 deg.
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The analytical results for residual carrier modulation are obtained by using the PLL loop SNR in

Eqs. (57) and (60), whereas the results for the suppressed case use the same equations with the Costas

loop SNR instead. The analytical [Eq. (57)] and simulated degradation results for residual and suppressed-

carrier modulation are shown in Figs. 14 and 15, respectively. The individual degradations due to the

carrier (CA), subcarrier (SC), and symbol (SY) tracking error are shown by the broken lines. As before,

the individual degradations are obtained by using infinite loop SNR in Eq. (57) for all the loops except

the one whose degradation contribution is desired.

The SER performance for the residual case is depicted in Fig. 16 and in Fig. 17 for the suppressed case.

In both figures, the curves shown are for an array with an ideal gain of 0.68 dB; an array with nonideal

gain, Eq. (60); and the nonideal performance of a single 70-m antenna, Eq. (19). Simulated SER results

for the nonideal array are shown as circles. Note that the conditional SER in Eq. (60) for this example

is given as

1 r4/Esl (Ccl_T___2C__c2)2Csc(1 - I_v._.__l_ Terfc LVN01 .-/1-t--)/2 jP,'(E) = _ erfc LVN01 ;1 + ;2

For the residual carrier case, degradation and loss at specific SER values are shown in Table 4.
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V. Carrier Arraying Using Multiple Carrier Loops

Carrier arraying using multiple carrier loops is shown in Fig. 4. As explained earlier, this scheme is

an improvement over carrier aiding because feedback from the aided loops enables the master loop to

operate at a higher loop SNR than in the absence of feedback. The disadvantage of this scheme is that,

for the array to get started, at least one of the antennas seems to require to lock on the carrier. For

residual carrier modulation, this technique has been partially analyzed [12,13] and also demonstrated [13].

In [12], analytical expressions for the phase error variance (due to thermal noise) of the master loop, as
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Fig. 16. SER for an array of two different antennas (CA-aid).

well as the aided (slave) loops, were presented. An extension of this theory that included the effects of

oscillator phase noise on loop jitter was given in [13]. Analytical expressions for degradation and loss for

the end-to-end system have yet to be presented. In our study, we obtained results for the degradation

and loss by simulating Fig. 6. We would like to note that we were not able to match certain intermediate

simulation results with the theory presented in [12]. Specifically, we found that the loop SNR of the

aided loop obtained via simulations differed substantially from the theory presented in [12]. The cause of

this discrepancy, we believe, is due to neglecting all the terms (including first-order terms) involving the

carrier loop bandwidth ratio, B_,/B_, in evaluating the integral [12, Eq. (60)].
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Table 4. SNR loss versus SSNR degradation

(carrier aiding: array of one 34-m STD and one
70-m antenna).

SER EsI/Nol Loss, dB Degradation, dB

10 -z -1.5 -1.4 -1.3

10 -2 3.7 -0.6 -0.5

10 -3 6.1 -0.4 -0.4

10 -4 7.7 -0.3 -0.3

The deviation between the existing theory for residual carrier modulation and our simulation results is

illustrated using an array of one 34-m high efficiency (HEF) antenna and one 34-m STD antenna operating

at S-band. Let the 34-m STD be the master antenna; then, from Table 1, "_1 = 1 and % = 0.07/0.17 =

0.41. The ideal gain is 10 log10 (_/1 + %) = 1.5 dB. For simulation purposes, we set (Pc/No)sTD = 10 dB-

Hz, (Pc/NO)HEF = 6.1 dB-Hz, and Bc,STD = 1 Hz. Hence, without arraying, the master-PLL loop SNR

is 10 dB. The master-PLL loop SNR in the arrayed system, denoted Pc,STD, should be higher than 10 dB,

due to error signal feedback from the aided loop. Note that the improvement in the master-PLL loop

SNR, which is maximum when the error signals add coherently, can be expected to be an upper bound

on the ideal arraying gain (1 + %), or 1.5 dB. The loop SNR, Pc,STD, is shown in Fig. 18 as a function of

the ratio between the master loop bandwidth and the aided-loop bandwidth, Bc,HEF. The bottom solid

line in Fig. 18 is the loop SNR of the master loop predicted by the analysis in [12]; applying our example

to the result in [12, Eq. (26)] yields

t

1 -- 3PsTD5 (63)

PS T D ---- -_¢ cl "_

i

where PSTD = ((Pc/No) STD)/Bc,STD = 10 dB is the nominal master loop SNR, and
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= 4G(1 + 2G) + 40(5 + G)_ + 4(7G - 1),_2 + 4(1 + 5G),_ 3 + 12,_4

6 =4G 2+4(3G-1)_+sG_ 2+4(1+G)_ 3+4_ 4

(64)

(65)

where _ = Bc, HEF/Bc,STD, and G = "_1-t- ")'2 is the ideal gain. Note that the above expressions are for

a carrier loop with a second-order loop filter with the damping parameter r = 2. The maximum gain or

improvement predicted by Eq. (63) can be found by keeping Bc,STD fixed and letting Bc,HEF --* O. For

the example given, the upper limit of the master PLL loop SNR is the value P]B_,,EF=0, shown in Fig. 18.
Hence, the theory seems to predict that the maximum improvement is less than the ideal arraying gain.

Notice in Fig. 18 that as Bc,HEF --* O, the simulated loop SNR (shown as ×) approaches the maximum

achievable loop SNR of (10 + 1.5) dB, denoted by A in the figure. Next we turn to the aided-PLL SNR,

PHEF, which is also shown in Fig. 18 versus Bc,STD/Bc,HE F. The aided-loop SNR as predicted by [12,
Eq. (61)], namely,

1 { E_, [0+2+')'2(40+10)]PHEF -- O._" -- 3 - G--2T2-G-+ 5J¢_2 G PSTD
[ 1}-1+ -7-- 1 - (66)

PHEF 3( G2 + 2G + 5)

is shown by the top solid line in Fig. 18. The quantity PHEF in Eq. (66) is the nominal carrier loop

SNR of the aided antenna and is equal to ((PC/No)HEF)/Bc,HEF. Keeping Bc,STD fixed, and letting
Bc,HEF _ O, we find that PliER _ 00, whereas the simulated results (shown as circles) approach the

master-loop SNR. The simulation results for the aided loop are consistent with the theory and results
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for the carrier-aiding scheme in Fig. 2. Recall that in Section III we concluded that the loop SNR of the

aided loop is upper bounded by that of the master loop. Interestingly, if we assume that there is perfect

feedback from the aided loop so that the master loop is operating with a 1.5-dB improvement, then using

Eq. (45), we can determine the upper bound on the second loop SNR, which is represented by (---) in

Fig. 18.

A. Example: Simulating an Array of One 70-m and One 34-m Antenna

As in the two previous schemes, we present the degradation and loss for a two-element array of one
70-m and one STD 34-m antenna. The results are obtained by simulations. For comparison purposes, we

use the same exact parameters used before. The symbol SNR degradation results are shown in Fig. 19,

and the SER performance is presented in Fig. 20. It is observed that the degradation and loss results are

better than the carrier aiding and worse than the carrier-array with a single PLL example.
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Fig. 19. Degradation (simulations).

Vl. Conclusion

Three similar techniques that use carrier information from multiple antennas to enhance carrier acqui-

sition and tracking were presented in conjunction with baseband combining. It was shown that the carrier

arraying using a single carrier loop technique can acquire and track the carrier, even when any single
antenna in the array cannot do so by itself. The carrier aiding and carrier arraying using multiple carrier

loops techniques, on the other hand, were shown to lock the carrier only when one of the array elements
has sufficient margin to acquire the carrier on its own. The tracking performance of these techniques was

shown to be almost equal for medium and high data rates. For low data rates, however, carrier arraying

using a single PLL has the best performance, followed by carrier arraying using multiple PLLs, and then

carrier aiding.
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The analytical expressions for degradation and loss of the carrier arraying using a single PLL and

the carrier aiding schemes were confirmed by simulations of the end-to-end system. The carrier arraying

using multiple carrier loops technique was evaluated by simulation alone.
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Appendix

Performance of Two Cascaded Phase-Locked Loops

The analysis of cascaded loops was considered in the past by several authors [14-16] for the purpose of

determining accurate two-way Doppler and phase measurements between an antenna and a spacecraft in

order to determine the relative position and velocity of the spacecraft. Here, in the carrier-aiding scheme,

we are interested in determining accurately the loop SNR of the aided loop and the joint pdf of the two

carrier phase error processes. Therefore, to accomplish that, we can apply the results of [14], keeping in
mind that, in our case, the two cascaded loops are both in the downlink.

The proposed solution in [15], which is based on Fokker-Planck techniques and verified by simulation,
takes on the following form:

where

p(xl, x2) = exp {a2 cos[(x2 - m_) - a(xl - ml)] + al cos(xl -- ?nl)}
(2 Io(a2) Io(al) (A-l)

within the region

al

a2 = [a22(1 - p2)]-,

77o"2

cT1

(A-2)

-Tr_<xi_<Tr fori= 1,2

and

{ (/_1,t92) then (ml,m2) = (91,02 + 01)(xa,x2) = (¢1,¢2) then (ml,m2) = (0,0)

The 0"12,a22, p, ml, and m2 are the parameters of the two-dimensional Gaussian density to which either

P(_I, 32) or P(¢I, ¢2) converge at high SNR, which must be determined in terms of the cascaded loop sys-

tem parameters in order to characterize the joint density function as given in Eq. (A-l). The results that

are stated here are specialized to second-order loops with imperfect integrators and damping parameters
equal to 2.
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As data communications rates climb toward 10 Gbits/s, clock recovery and syn-

chronization become more difficult, if not impossible, using conventional electronic

circuits. The high-speed photonic clock regenerator described in this article may
be more suitable for such use. This photonic regenerator is based on a previously

reported photonic oscillator capable of fast acquisition and synchronization. With

both electrical and optical clock inputs and outputs, the device is easily interfaced

with fiber-optic systems. The recovered electrical clock can be used locally and

the optical clock can be used anywhere within a several kilometer radius of the

clock/carrier regenerator.

I. Introduction

In high-speed fiber-optic communications systems, the ability to recover the clock from the incoming
random data is essential. The recovered clock must be in precise synchronism with the incoming data

and is used in further signal processing systems, such as regenerative repeaters, time division switching

systems, and demultiplexers.

Conventional clock recovery devices are generally based on electronic phase-locked loops (PLLs) [1].

These devices may not be suited for the high-speed fiber-optic communications system because of their

relatively slow speed, slow acquisition time, narrow tracking range, inability to be tuned over a wide

range of frequencies, and non-optical inputs and outputs. Having optical inputs and outputs is important
because it makes interfacing with a fiber-optic system easier.

All optical clock recovery schemes proposed by many authors [2-6] are based on injection locking a

pulsed laser with the incoming data stream, wherein the pulsed laser has a nominal pulsation rate close
to the incoming data rate. In one scheme, the pulsed laser [2-4] is a mode-locked fiber ring laser, and

the input data modulates the laser cavity length or loss via the optical nonlinear effect. Because optical

nonlinearity is used, the intensity of the injection data has to be high and is, therefore, not practical in

many applications. In another scheme, the pulsed laser is a self-pulsating semiconductor laser [5,6] where

the self-pulsation is caused by self-Q-switching within the device. The pulsation rate can be controlled

by varying the current to the device. The problems associated with such a device are the relatively low

speed (a few GHz) and relatively high noise.

Although the concept of all optical systems is attractive, the majority of present and future systems

will be hybrid, meaning that the system can be controlled and accessed both optically and electronically.
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Therefore, a clock recovery device having such a hybrid capability is important, and in this article we

report such a device---the photonic clock regenerator. We also show that the same device can be used for

high-frequency carrier recovery and will be useful in fiber-optic analog communications systems.

The photonic clock and carrier regenerator is based on the photonic oscillator described in an earlier

article [7]. As shown in Fig. 1, functionally it is a six-port device with an optical and an electrical

injection port, an optical and an electrical output port, and two voltage-controlling ports for tuning

frequency. The incoming data are injected into the photonic oscillator either optically or electrically. The

free-running photonic oscillator is tuned to oscillate at a nominal frequency close to the clock frequency

of the incoming data. With the injection of the data, the photonic oscillator will be quickly phase locked

to the clock frequency of the data stream while rejecting other frequency components (harmonics and

subharmonics) associated with the data. Consequently, the output of the locked photonic oscillator is a

continuous periodic wave synchronized with the incoming data, or simply the recovered clock.

(a)

RANDOM _'_
DATA _ _ _

OF

ELEOTR,OAL,NJEOT,ON REOOVEREOOLOOK

il [ _ ELECTRICAL

PHOTONIC
OSCILLATOR

AT RHz
, _ OPTICAL

OPTICAL INJECTION

(b)

L

SPOILED _ _ _ _
CARRIER _

AT'o

ELEOTR,OAL,NJECT,ON REOOVEREDOA R,ER

il 1 _ ELECTRICAL

PHOTONtC
OSCILLATOR

AT fo Hz
, _ OPTICAL

OPTICAL INJECTION

Fig. 1. Functions of the photonic clock and carrier regenerator: (a) clock recovery and (b) carrier recovery.

II. Clock Recovery Demonstration

Figure 2 shows the clock recovery experiment setup. An HP 8080 Word Generator System was used

to generate a stream of repetitive 64-bit words at 100 Mbits/s, and the photonic oscillator was tuned to

oscillate at 100 MHz. The data were injected into the bias port of the electro-optical (E/O) modulator

through a filter and a bias T. The filter was centered at 100 MHz with a 3-dB bandwidth of 10 MHz.

It was used to reduce unwanted frequency components of the input data. The output of the photonic

oscillator was fed either into a spectrum analyzer (HP 8562) or an oscilloscope (Tektronix 2465B). When

using the oscilloscope, the first bit of each word was used to trigger the sweep so the whole word could

be displayed.

Note that although a photonic clock regenerator is capable of recovering a clock at much higher

frequencies (up to 70 GHz), due to equipment constraints we chose to demonstrate clock recovery at

100 MHz to make our measurements easier. With the HP 8080 system, the data pattern can easily be

selected to be either return-to-zero (RZ) or non-return-to-zero (NRZ), so both types of data were tested in

our experiments. The selected 64-bit word was 0010101101101001 0110001110101101 1011001010001010

0010101100101000. The clock recovery is independent of the word chosen, as long as it is balanced.
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Fig. 2. Clock recovery experiment setup.

Figure 3 shows the experiment results in the frequency domain that demonstrated successful clock

recovery from an NRZ data stream. The frequency spectrum of the input data is measured with the

100-MHz filter and is identical to the injected signal. As one can see, the selected NRZ data stream has

some frequency components stronger than the clock frequency. After clock regeneration, the recovered

clock is 62-dB stronger than the strongest harmonic component. Figure 4 shows the same experiment

results in the time domain. Figure 4(a) shows the traces of the input data (lower trace) and the trigger

signal (upper trace). Figure 5 contains the same information as Fig. 4, except that the time span is

reduced 10 times so that the details of the traces can be seen. It is evident that the recovered clock is a

perfect sine wave. The fact that the recovered clock can be clearly displayed on the oscilloscope when the

first bit of data is used as the trigger indicates that the recovered clock is synchronized with the data. If

the photonic oscillator is not locked to the data (free running), its phase wanders relative to the data bits.

As a result, the display of the photonic oscillator's output signal on the oscilloscope is smeared when any

data bit is used to trigger the oscilloscope, as shown in Fig. 6. Note the recovered clock level is almost

independent of the input signal level, a feature that is desirable for clock recovery and is inherent in

injection-locked oscillators. Other proposed high-speed clock recovery circuits use automatic gain control

and limiting amplifiers to achieve constant amplitude [8].

We have also successfully demonstrated photonic clock recovery from RZ formatted data. Because the

RZ data have a higher level of the clock frequency component, recovering the clock is more straightforward

than recovering the clock from NRZ data. Similar results are expected for optical injection since the data

in the optical domain will be automatically converted by the internal photodetector into the electrical

domain before affecting the photonic oscillator. Note that for infinitely long NRZ random data, the clock

frequency component is zero. In order to recover the clock from such a data stream, a procedure to

convert NRZ data format to RZ format is required [1].
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Fig. 3. Clock recovery from an NRZ data stream
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Input and (b) recovered clock.

Fig. 4. Clock recovery from an NRZ data stream measured in the time domain: (a) random data Input end
(b) recovered clock.

III. Carrier Recovery Demonstration

Similar to clock recovery, a carrier buried in noise can also be recovered by the photonic oscillator. To

do so, we simply inject the spoiled carrier into the photonic oscillator that has a free-running frequency

close to the carrier frequency and an output power level N(N >> 1) dB higher than the carrier level. The

injected carrier forces the photonic oscillator to be locked with the carrier and results in an equivalent

carrier gain of N dB. Because the open-loop gain of the photonic oscillator is only n dB (n _ 1), the noise

of the input is amplified by only n dB and the signal-to-noise ratio of the carrier is then increased by

(Y - n) dB.
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Fig. 5. The data trace of Fig. 4, with the time span reduced 10 times: (a) random data input and (b) recovered clock.

Fig. 6. The data trace where the photonic oscillator is
not locked to the data.

Figure 7 is the experiment setup for demonstrating the photonic carrier recovery. In the experiment, a

clean 100-MHz carrier from an H-maser frequency standard and a clean-up loop is combined with a noise

source consisting of two noisy amplifiers in series. The resulting spoiled carrier was measured using the

spectrum analyzer and is shown in Fig. 8(a). Figure 8(b) shows the spectrum of the recovered carrier, and

it is evident from the figure that the signal-to-noise ratio of the carrier is increased by more than 50 dB.
We also measured the spoiled carrier and recovered carrier in the time domain with an oscilloscope, and

the results are shown in Fig. 9. In both Fig. 9(a) and Fig. 9(b), the upper trace (a square pulse) is the

trigger signal and the lower trace is the carrier. Comparison of the two figures clearly demonstrates the

effectiveness of the photonic oscillator as a carrier recovery device.

IV. Attractive Properties of the Photonic Clock and Carrier Regenerator

Our experiment results and analysis indicate that the photonic clock and carrier regenerator described

above has the following attractive properties:

(1) High-speed or high-frequency operation. The speed of the device can be as high as

70 GHz and is limited only by the speed of the photodetector and the E/O modu-
lator used. We have demonstrated a photonic oscillator operating as high as 9.2 GHz.
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Fig. 7. Experiment setup for demonstrating photonlc carrier recovery.
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Fig. 9. Carrier recovery measurement in the time domain: (a) spoiled carrierand (b) recovered carrier.

The reason for choosing 100 MHz to demonstrate the clock and carrier recovery in the

experiments above is because the measurement equipment we have (word generator,
oscilloscope, and reference clock) operate around 100 MHz.

(2) The amplitude of the recovered signal (clock or carrier) is constant. It is independent

of the input power of the signal to be recovered. This feature is especially important in
clock recovery because the clock component contained in the received data stream varies

with time and with sender ( in a time division multiplexing system). The photonic clock

regenerator ensures that the recovered clock has a constant power level at all times.

(3) The photonic clock and carrier regenerator can be accessed both optically and electron-

ically. It has both electrical and optical inputs and outputs. This feature makes the

device attractive in terms of easy interfacing with a complex fiber-optic communication
system.

(4) Fast acquisition time for phase locking. Because the photonic clock and carrier regen-
erator is based on injection locking, its acquisition time is much faster than that of a

clock recovery device based on a phase-locked loop [9]. Fast acquisition is important
for high-speed telecommunications, especially for burst-mode communication. The esti-
mated acquisition time is on the order of a microsecond or faster.

(5) Wide tracking range. The tracking range of the photonic clock and carrier regenerator

is on the order of a few percent of the clock frequency, compared to a few tens of Hz

for a clock recovery device based on a phase-locked loop. Having a wide tracking range
makes the implementation of the device easier because the device does not have to be

tuned precisely to match the incoming data rate.

(6) Frequency tunability. Unlike many other kinds of oscillators that can be tuned in only
a narrow frequency band, the photonic oscillator can be tuned over many tens of MHz

by changing the filter in the feedback loop and fine tuned by simply changing the loop

delay or bias point of the E/O modulator. Delay line oscillators maintain high Q in spite

of their ability to be tuned over a wide frequency range. This feature makes the device

flexible in accommodating different systems, designs, and signal conditions.

(7) The device can be integrated on a chip. All of the key components of the device, such

as the laser, the amplifier, the E/O modulator, and the photodetector can all be based
on the GaAs technology and can be fabricated on the same substrate.
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V. Applications

Figure 10 shows a clock recovery, synchronization, and signal recovery system based on the clock

regenerator described here. An optical carrier containing high data-rate digital information arrives from

a remote location and is split into two paths. One of these signals is injected into the photonic clock

regenerator and the other signal is delayed in an optical delay line. The delay line is used to delay the

received signal long enough for the clock regenerator to lock up so no data bits will be lost from the

leading edge of the digital data stream. The recovered electrical clock is applied to the data recovery

device in synchronization with the received signal, permitting the digital data to be recovered.

The recovered optical clock can be transmitted over optical fiber to be used by other devices within

a several-kilometers area. This negates the need to have multiple clock recovery systems in a complex.

Because of the high loss and dispersion of metallic transmission lines, it is not practical to use them to

distribute a recovered 10-GHz clock over more than a few tens of meters.

In Fig. 11, the carrier regenerator is used as a clean-up loop for an analog frequency reference signal

transmitted from a remote frequency reference. Again the regenerator has both an electrical and an

optical output, so once the frequency reference is regenerated, it can be distributed locally over optical

fiber.
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Fig. 10. Clock regenerator and data recovery system.
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The process of combining telemetry signals received at multiple antennas, com-

monly referred to as arraying, can be used to improve communication link perfor-

mance in the Deep Space Network (DSN). By coherently adding telemetry from
multiple receiving sites, arraying produces an enhancement in signal-to-noise ratio

(SNR) over that achievable with any single antenna in the array. A number of differ-

ent techniques for arraying have been proposed and their performances analyzed in
past literature [1,2]. These analyses have compared different arraying schemes un-

der the assumption that the signals contain additive white Caussian noise (AWGN)
and that the noise observed at distinct antennas is independent.

In situations where an unwanted background body isvisible to multiple antennas

in the array, however, the assumption of independent noises is no longer applicable.
A planet with significant radiation emissions in the frequency band of interest can

be one such source of correlated noise. For example, during much of Galileo's

tour of Jupiter, the planet will contribute significantly to the total system noise at

various ground stations. This article analyzes the effects of correlated noise on two

arraying schemes currently being considered for DSN applications: full-spectrum

combining (FSC) and complex-symbol combining (CSC). A framework is presented

for characterizing the correlated noise based on physical parameters, and the impact
of the noise correlation on the array performance is assessed for each scheme.

I. Introduction

Arraying spacecraft telemetry has a number of desirable applications in the Deep Space Network. By
combining signals from multiple antennas, arraying has the benefit of increasing the signal-to-noise ratio

(SNR) of the combined signal over that achievable with any individual antenna in the array. Arraying
may be used to coherently track signals that are too weak to be tracked by a single antenna or to allow an

increase in the supportable data rate for stronger signals. Several different schemes for performing arraying
have been proposed and analyzed in past literature [1,2]. These schemes differ in the synchronization

processes that are used to combine and demodulate the signals. Thus, a benchmark used to compare
different arraying schemes is symbol SNR degradation, which is a measure of the SNR reduction due to
imperfect synchronization for a particular scheme.
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Previous analyses that have compared arraying techniques in terms of symbol SNR degradation have
used an additive white Gaussian noise (AWGN) model to describe the deep-space channel and have

assumed the noise waveforms received at distinct antennas are independent. However, if a strong radio

source is within the antenna pattern of multiple antennas in the array, the noise observations at different

antennas become correlated. For a substantial fraction of Galileo's encounter with Jupiter, for example,

the planet will have an angular separation from the spacecraft that is less than the beamwidth of a
70-m antenna at S-band (2.3 GHz). 1 Further analysis is thus needed to characterize the performance of

arraying schemes in cases where correlated noise is present.

Prior work has been conducted on this subject but has not exhausted research possibilities. A study

by Dewey [3] examines correlated noise effects due to planetary sources, focusing mainly on physical
considerations. A correlated noise model is presented, taking into account properties of the source and

the array geometry. The impact of the background source on arrayed symbol SNR relative to a case
of uncorrelated noise is.then analyzed. The results obtained are applied to observation of the Galileo

spacecraft from a four-element array in the DSN's Australia complex. However, Dewey's study does not
take into account the effects of imperfect synchronization in telemetry arraying, which are dependent on

the specific arraying technique used. Thus, the analysis does not identify the relative advantages and

disadvantages of different arraying schemes under conditions of correlated noise.

The purpose of this article is to analyze the effects of correlated noise on the full-spectrum combining

(FSC) and complex-symbol combining (CSC) arraying schemes. In Section II, background material needed
to understand the physics underlying background noise in receiving systems is presented. Parameters used

to characterize the noise correlation properties will be introduced and explained. Sections III and IV then

apply this model to the FSC and CSC techniques and compute the symbol SNR degradation for each
scheme. Section V applies the results of the previous sections to the Galileo mission. Predicts for the

signal and noise parameters are used to evaluate the performance of both arraying schemes in this scenario.

Finally, Section VI summarizes the main results of the work.

II. Background Noise Properties

Here we present basic terminology used to describe broadband sources that will be used for the
remainder of the analysis. The discussion that follows is included only to summarize major results from

previous work; readers interested in a more thorough treatment of the subject material may refer to a
text on radio astronomy, such as [4], or the work performed by Dewey alluded to earlier [3].

Consider first the effect of a background source on a single receiving system. The noise observed at

an antenna consists of both thermal noise due to front-end receiver electronics and radiation due to any

radio sources in the antenna's field of view. Such sources typically have an emission spectrum that varies

very slowly with frequency and can, therefore, be considered white over the bandwidth of interest. 2 The
increase in total system temperature due to the background source is found by integrating the source's

brightness distribution over the antenna's reception pattern, i.e.,

A¢ / I B(_)Pg(s) dsT,=_
(1)

where Ae is the effective receiving area of the antenna in m2; k is Boltzmann's constant, 1.379 × 10 -23

W/K/Hz; B(_) is the brightness of the source in W/m2/Hz/sr (st stands for steradian, a measure of solid

angle); PN(_) is the normalized antenna reception pattern; and h is a unit vector specifying direction.

1G. Resch, "Jupiter's Contribution to the Total System Temperature at S-Band During the Galileo Mission," JPL Interoffice
Memorandum 335.3-92.02 (internal document), Jet Propulsion Laboratory, Pasadena, California, June 23, 1993.

2 Ibid.
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The one-sided power spectral density of the noise due to the source is then given by N8 = kTs. Note that

in the upper limit, when the source is concentrated in the peak of the antenna's reception pattern, the
temperature increase is given by

Ae//T, = _ B(g) d_ (2)

Ae

= (3)

where S is the total flux density of the source in W/m2/Hz. As the angular separation between the source

and the spacecraft increases, the background source moves out of the peak of the antenna pattern, and

its temperature contribution diminishes. In addition, the flux density for a particular source is dependent

on its distance to Earth; the greater the range, the smaller the observed flux is. Thus, the temperature
contribution for a body depends on both its strength and its position.

Now consider a pair of antennas physically separated by a baseline vector /3/k observing a common

source. The cross-correlation function for the baseband (BB) noise processes fii(t) and ilk(t) can be
written as

Ra,,ak(r) _ E[fi_(t)fi*k(t - r)] = a sin(2rrBr)
7rT

(4)

where B is the one-sided bandwidth of the noise waveforms, and a is their cross-power spectral density.
If the bandwidth B is wider than the telemetry bandwidth, then the cross-spectrum is white over the

bandwidth of interest, and the "sinc" function sin(2rrBr)/(Trr) can be approximated by an impulse
function, i.e.,

= (5)

It can be shown [3,4] that the cross-power spectral density level is given by

= 2 B(a) v/PN, (s)PYk (_)e j2"f°&k 4/c d_

_ iVleJ¢,,2 (6)

where fo is the observation frequency, and e is the speed of light, 3 × 108 m/s. In radio interferometry

applications, the quantity IVle j¢,' is known as the complex visibility of the source. A few important

observations regarding Eq. (6) are made here. First, note that the exponential term eJ2"I,,B,ka/c produces

a sinusoidal variation over the spatial extent of the source. This variation is known as the fringe pattern

formed by a particular pair of antennas. The period of these fringe oscillations is given in radians/cycle
by C/foBik,,, where Bike, is the projected baseline length in the direction of the source. If a source has

an angular size much greater than the fringe period, the cross-correlation magnitude then tends to zero

due to the averaging effect of the sinusoid. Thus, in the long baseline limit (i.e., B_k,, >> c/(foR,), with
R, being the angular radius of the source), lal -+ 0, and the noise observations due to the source become

uncorrelated. By contrast, for Bik,, << c/(foR,), the magnitude of the cross-power spectral density
achieves its upper limit, namely
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(7)
2

Thus, the degree of noise correlation observed by an array of antennas depends heavily on the geometry of

the array. This point is stressed in [3], where it is stated that the more compact the array configuration,

the greater the impact of a background body on the array.

Finally, we introduce the correlation coefficient, describing the degree of correlation that exists between

the noise at two antennas, defined as

(s)

Note that in the upper limit (i.e., source size small compared to fringe period), the correlation coefficient

becomes

where Ts,, Tsk are the source temperatures at antennas i, k, and Ti, Tk are the total system temperatures
at the two antennas. Thus, the greater the contribution of the source to the total system temperature,

the higher the correlation coefficient, as is intuitively expected.

Combining Eqs. (5), (6), and (8), the cross-correlation function for the noise observed at two antennas

can be expressed as

p_,,C_k (T) = p_k vf_o_Nok ej¢,_ 6(T) (10)

where ¢_k is used to express the correlation phase, denoted by Cv in Eq. (6).

III. Full-Spectrum Combining Performance

Given a mathematical description of noise correlation properties, we now apply the model to analyzing
correlated noise effects on arraying. Full-spectrum combining is described in detail in [2] and summarized

here briefly. Assume the array consists of L antennas, where antenna 1 is taken to be the "master"

antenna (i.e., the antenna with the highest G/T.) As shown in Fig. 1, each signal is first downconverted
to baseband 3 by local oscillators in phase quadrature. Each signal pair, which can be thought of as a

single complex signal, is then shifted in time by some amount Ti to compensate for differing arrival times
of the spacecraft signal at the various antennas. The complex baseband signals are then aligned in phase,

multiplied by prespecified weighting factors, and added. Finally, the combined signal is processed by a

single carrier, subcarrier, and symbol loop.

Two quantities used to describe arraying performance are the ideal arraying gain, denoted by GA,

and the symbol SNR degradation, denoted by D. The arraying gain is defined as the ratio of the ideal

symbol SNR of the arrayed signal to the ideal symbol SNR of antenna I [1]. Here, "ideal" means the

3Analysis presented in [2] actually assumes all processing is done at an intermediate frequency, rather than at baseband.
A baseband system was assumed here to simplify the analysis. This represents no loss of generality, since final results are

not dependent on what frequency processing is done at.
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symbol SNR that would be achieved in the absence of synchronization errors (i.e., perfect signal combining

and perfect carrier, subcarrier, and symbol references.) Note that the arraying gain GA is independent

of which arraying technique is used, since synchronization losses are ignored. Thus, GA describes the

maximum SNR enhancement that can be achieved by arraying, but is not useful for evaluating the relative

performance of one arraying scheme over another. The ideal arraying gain is computed in [1] for a set of

antennas observing independent noise waveforms. Our first step in evaluating the impact of a background

body on arraying will be to compute GA for the case of correlated noise. This analysis is analogous to
that found in [3], although the notation adopted here is different.

Degradation is defined as the ratio of the actual SNR of the arrayed telemetry to that achieved with

perfect synchronization (i.e., the ideal SNR). Clearly, degradation is dependent on which arraying scheme

is used, since synchronization losses depend on the specific processing used to combine and demodulate

the signals. Degradation for full-spectrum combining and complex-symbol combining was computed in

[2], also under the assumption of independent noises. Thus, the second step in analyzing correlated noise

effects will be to derive degradation expressions for the two schemes.

A. Ideal Arraying Gain

The signal format for deep-space telemetry is binary phase shift keyed (BPSK) employing a squarewave

subcarrier. After time alignment, the IF signal from the ith antenna can be expressed as [1]

y,(t) = s,(t) +n,(t)

= 2V/_T, COS (WJFt + Oi + Ad(t) sqr(wsct + 8so)) + n_(t)

= _cos(w1Ft+8_)- _d(t) sqr(w_ct+8_)sin(wigt+O,)+n,(t) (11)

where PT, is the total signal power in watts; wIF is the intermediate frequency in radians/s; 8i is the

carrier phase in radians; A is the modulation index in radians; d(t) is the binary data, taking on values

of +1; sqr(x) is the squarewave function, given by sqr(x) = sgn(sinx); Wsc is the subcarrier frequency

in radians/s; Osc is the subcarrier phase in radians; Pc, is the carrier power in watts, given by Pc, =

PT, cos 2 A; PD, is the data power in watts, given by PD, = PT, sin 2 A; and hi(t) is an additive white
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Gaussian noise process with one-sided power spectral density No_ W/Hz. The corresponding complex

baseband signal is given by

_,(t) = _,(t) + _,(t) (12)

= V/-_.e j(_t+°') + jv/-_,d(t)sqr(wsct + Osc)e j(wbt+Oi) -t-_li(t) (13)

where CObis the baseband frequency (which, by definition, is close to zero), and fii(t) is the complex
baseband noise, the real and imaginary parts of which each has one-sided power spectral density No,.

The spectrum of the baseband telemetry is shown in Fig. 2.

fb = BASEBAND CARRIER FREQUENCY
fsc = SUBCARRIER FREQUENCY

Pc

22,122,
$- a% $- _sc o _b $* tsc 6" a%

Fig. 2. Spectrum of the baseband telemetry signal.

Note that the bandwidth needed to transmit the signals _i(t) to a common location for combining is

determined by the subcarrier frequency, fsc = w_c/27r, and is much greater than the actual data rate.
As an alternative to the method described in [2], a version of FSC that only transmits portions of the

spectrum containing signal energy can be used to reduce this bandwidth requirement. Each signal can

be passed through a bank of matched filters separately, passing the subcarrier harmonics with the data
modulation; the total transmission bandwidth is then proportional to the data rate. This alternative

is mentioned briefly in [1]. However, the drawback of such a system is that the processing required

is dependent on the subcarrier frequency and data rate and must be modified for each mission. For

simplicity, we will focus on the more basic implementation of FSC described in [2], keeping in mind that

a more bandwidth-economizing option also exists.

Let the phase difference between the 1st and ith signal be denoted by ¢1i = 01 - 0i.^In the algorithm

described in [1], signals 2 through L are phase rotated by an estimate of this quantity, ¢1_, to align them

with signal 1. The aligned signals are then multiplied by prespecified weighting factors, fYi, and summed.

The combined signal is thus given by

(14)

L L

E _,_" _,(t) + _ _,_J_,,_,(t) (15)
i=1 i=1

L

_- _ _,eJ3,, (_,eJ(_°',t+°') + jv/-_d(t) sqr(cosct -]-Osc) ej(c°'t+Oi))

i=l

L

+_Z,_J_,'_,(t) (16)
i=1
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where the weights _i are chosen to satisfy the condition

No_ (17)

for i = 1,...,L. It is shown in [1] that these weights maximize the combined SNR when the noises

fi/(t) are independent. Note that this is not necessarily the optimal choice of weights for the correlated

noise case, as pointed out in [3]. Furthermore, the optimal choice of phases used to array the signals is

not necessarily the relative signal phases, ¢1i. Using the phases Cu will certainly maximize the arrayed
signal power, but not necessarily the ratio of signal to noise power, which is the relevant criteria for

optimization. The problem of optimal combining weights and phases for signals with correlated noise

has been analyzed in [5], where the results are applied to an array of antenna feed elements. However,

computation of these weights requires knowledge of the pairwise correlations between the noises, a_j eJ¢_,_,
for all i, j pairs. A scheme can be devised to estimate the required parameters in real time and modify the
weights accordingly, but would significantly complicate the problem. Our goal, instead, is to determine

the performance impact of the correlated noise assuming the traditional combining scheme is used.

The total combined signal power, PT, is given by

~tPr _- E [_omb(t)] E [_omb(t)] (18)

If the relative signal phases are estimated perfectly (i.e., ¢1_ = ¢14 for i = 2,.-., L), the combined signal
power becomes

PT = PT, "_ + ?i_/j (19)

where 74 _ [(PT, )/(PT, )] [(No, )/(No, )].

The one-sided power spectral density of the real and imaginary parts of the combined noise is given
by

No_= 1
_-_E [_comb(t)_;omb(t)] (2o)

where B is the one-sided bandwidth of the noise waveforms. Note that the factor of two in the denominator

of Eq. (20) results from the fact that the real and imaginary parts of the noise each has half the power

of the complex noise. From the definitions of power spectral density and cross-power spectral density, it
follows that

E [fi_(t)fi_(t)] = 2No, B (21)

E [_,(t)_; (t)] = 2_4jd¢; B (22)

Equations (20), (21), and (22) can be combined to find the power spectral density of the combined noise,
yielding
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No = No_ 7i + _/7_TjP,J
i=l J=*

(23)

The PT/No of the combined signal is thus given by

where %b_jg ¢_'_-¢ij. The parameters p,j and _bij describe the relevant statistics for the noise correlations
between the various antenna pairs and determine the correlated noise impact on the ideal arraying gain.

The combined signal is finally processed by a single carrier, subcarrier, and symbol loop. Assuming

perfect references at each of these three stages, the symbol SNR of the arrayed signal becomes

2PD1 GA (25)
No, R_ym

where GA is the ideal arraying gain due to combining the signals. Note that setting all the noise correlation

coefficients pij to zero results in GA = _-_L=I 7i, which is the ideal arraying gain in the case of uncorrelated

noises, as discussed in [1].

Further note that the ideal arraying gain in the presence of correlated noise can be higher or lower than

the uncorrelated noise case, depending on the phases _b,j. This point can be understood by considering

an array of two equal antennas (i.e., 3'1 -- 72 = 1.) Figure 3 shows values for GA for two equal antennas
as a function of p and _b. For p = 0, the ideal arraying gain is a constant 3 dB, as expected. Now suppose

the noises have some nonzero correlation coefficient, p, and some correlation phase, Cn. If ¢ = 0 deg,

then the phase difference of the spacecraft signal as observed by antennas 1 and 2, ¢, is equal to the noise
correlation phase Cn. Thus, phase aligning the two signals also phase aligns the correlated component

of the noise. The noise from the background source adds maximally in phase, and the combined noise

power increases. Thus, the combined SNR decreases, and hence the arraying gain falls below 3 dB. By
contrast, if _b = 180 deg, phase aligning the signal results in combining the correlated component of the

noise 180 deg out of phase. Thus, the noise combines destructively in this case, and the arraying gain

is now greater than 3 dB. For intermediate values of %b,the arraying gain varies continuously from its

minimum value at %b-- 0 deg to its maximum at _b -- 180 deg.

B. Symbol SNR Degradation

In practice, perfect phase alignment and ideal carrier, subcarrier, and symbol references are not avail-

able. Some degradation in the arrayed symbol SNR is, therefore, incurred due to synchronization errors.

To quantify the degradation, we first find the set of density functions for the phase alignment errors
A¢1_ = ¢1i - ¢1i, i = 2,.-., L. This set of functions is then used to compute the PT/No of the arrayed

signal. Adding in losses due to carrier, subcarrier, and symbol tracking, the symbol SNR at the matched-
filter output can be computed. Finally, comparing the actual symbol SNR to the ideal symbol SNR given

by Eq. (25) yields the degradation for full-spectrum combining.
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1. Antenna Phasing. A set of phase estimates ¢1i for i = 2,..-,L are needed to align signals

2,..., L with signal 1. In the description of FSC given in [2], the phase difference between _(t) and
g] (t) is estimated by filtering the two signals to some lowpass bandwidth Btp Hz, multiplying them, and

averaging their product over Tcorr s. The phase of this complex quantity is then computed by taking the
inverse tangent of the ratio of the imaginary to real parts. A block diagram of this scheme is shown in
Fig. 4.

The complex product of the baseband signals after averaging, Z, is given by

_ 1 f fi ....z Tcorr + dt

1/= (V/_C, Pc, + P_D_PD, H)e j¢1' + _ (fis,n (t) + film (t)fitp, (t)) dt

where H is given by

(26)

H = (27)
i=

i _.ld

and M is the highest harmonic of the subcarrier passed by the lowpass filter. The term fis,_(t) is
composed of signal-noise terms in the product and has zero mean. Note, however, that the noise-noise

term, gtp_ (t)fitp, (t)*, does not necessarily have zero mean, due to a possible correlation that exists between

the two noise waveforms. The expected value of this noise product can easily be computed from the cross-
power spectral density of ill(t) and _i(t); thus,

E[z] = (v/-Pc, pc, + v/pD, Pn, H)eJ¢,, + 2pa,,_,BtpeJ¢? _ (28)

Since ¢]'i is not necessarily equal to ¢1, the noise product introduces a "bias" to the estimate of the

relative signal phase. This situation is represented pictorially in Fig. 5. The complex quantity E[z] can
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Fig. 5. Complex correlation vector.

be thought of as a vector sum of a signal-to-signal correlation, S, and a noise-to-noise correlation, /V.

Note how the presence of the noise vector biases the measurement of the phase of the complex correlation.

The relative magnitude of these vectors is given by

1571 - 2pli B,p \ k,-_o, No, + H _ No,

For typical parameters, even relatively modest levels of noise correlation can lead to a substantial biasing

effect in estimating the relative signal phase. For example, consider correlating two signals, each having

a PT/No of 20 dB-Hz with a 1-kHz correlation bandwidth. Even if all subcarrier harmonics are included

in the correlation, making H = 1, a correlation coefficient as low as p -- 0.1 makes the ratio in Eq. (29)

equal to 0.5. The phase estimates are then influenced more by the relative noise phases ¢_'_ than the

desired quantities ¢1i, leading to a high amount of degradation in combining the signals. If the alternative

method described in Section III.A is used, where the subcarrier harmonics are filtered individually prior to

combining, the effective correlation bandwidth can be lessened, thus reducing the impact of the noise bias.

Nevertheless, a practical implementation of full-spectrum combining requires a modified phase estimation

algorithm if correlation levels encountered will generate significant biases.

The method of phase estimation shown in Fig. 6 can be used for this purpose. Here, each signal is

filtered to some bandpass bandwidth Bbp, and an additional complex correlation is performed between
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the resulting waveforms. The center frequency of this filter is chosen so as to not capture any energy
from the telemetry; this can be accomplished by locating the filter at an even multiple of the subcarrier

frequency, for example. After scaling the noise-only correlation by the ratio of the lowpass-to-bandpass
bandwidths, this quantity provides an estimate of the contribution of the noise to the total correlation.

The bandpass correlation can then be subtracted from the lowpass correlation to compensate for the
mean correlation vector I/VI. The compensated correlation can thus be expressed as

( ) '/Z = v/-P-_Pc,+_H eJ¢,,+T--_o_ (fi.,.(t)+fiZp,(t)fitp,(t)) dt

Blp 1 /- Bb--_T_orr nbpl (t)fi_p, (t) dt

= (_ + V/_PD, H)e 30'' + (30)

where the the noise term N now has zero mean. The phase estimate is then found by taking the inverse

tangent of the ratio of the imaginary-to-real part of Eq. (30), i.e.,

¢,, = tan-' [ (V/-_Pc' + _H)sin¢l, + NQ]

L(x/Pc, Pc, + v/PD, PD, H) cos¢li +NI]
(3])

where NI and NQ are the real and imaginary parts of /Y, respectively. Note that although NI and

NQ have zero mean, their joint statistics are still influenced by the correlation between ill(t) and fii(t).
These statistics are analyzed in Appendix A, and the density function for the phase estimation error
A¢li _ ¢1i - ¢1i is derived.

In [2], a quantity known as the correlator SNR is introduced, defined as

E[Z]E*[Z]

SNncor_ = E[ZZ*] - E[Z]E*[Z] (32)

The correlator SNR is a measure of the spread of the phase error density p¢(A¢li) and is inversely related

to the variance of the phase error. In [1], where FSC is analyzed for independent noises, it is shown that
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the phase error density can be expressed solely in terms of the correlator SNR. For the correlated noise

case, the density is given in Appendix A in terms of the correlator SNR and the correlation parameters

Pl_ and ¢1,.

Figures 7 through 9 show the density function p¢(A¢) for various values of p and _b. The signal

parameters chosen for these curves are (PT/No)I = (PT/No)2 -- 25 dB-Uz, A = 90 deg, with seven
subcarrier harmonics included in the correlation. The correlator parameters are Btp -- B_ = 15 kHz,

and Tcorr -- 3 s. Note that even for a noise correlation as high as 0.4, the density function looks remarkably
like that of the uncorrelated noise case. Simulations were performed for the same parameters and densities

collected for the measured phase estimates. These results are shown with the analytical curves in Fig. 10.

J (a)
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1.5

1.0

j, o. t
I i ,(deg)
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p=O

Fig. 7. Phase estimate density.

2. Arrayed Symbol SNR and Symbol SNR Degradation. Using the set of estimated phases to

align the signals, the combined signal becomes

Ycomb(t) = gcomb(t) + h_omb(t)
(33)

L L

i=1 i=1

(34)

L L

_]3, (v/-P-_-jv/-_, sqr(wsc t +Ssc)) ej(_bt+e'+A¢'') ÷ Z ]_iej$''h'(t) (35)
i=l i=l

The combined signal power conditioned on the set of phase errors A¢li is thus given by

P_ = E [gcomb(t)] E [g'comb(t)] (36)

=PT, LL_ + A._/___r_rJ /
i=1 i=I /

(37)

Similarly, the conditional noise power spectral density is given by
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1 *

N'o = -_ E [ficomb(t)fZcomb(t)] (3s)

= No, (± )i=1 i=1 j=l

(39)

Taking the ratio of Eq. (37) to Eq. (39) yields the conditional PT/No of the combined signal, i.e.,

(PT)' PTI _-"_'L=I "Y? + ff"]L=l ._L_I _Yi_j Cj(_¢I'-A¢IJ)_o - No_ _ (4o)E,=,'_, +E,"=, L
_._;_ (_fi"fj) 1/2 Pij eJ_biJ e j(A¢'i-A¢IJ)

After carrier and subcarrier demodulation and matched filtering, the conditional symbol SNR of the
arrayed signal is given by
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Fig. 9. Phase estimate densities: (a) p = 0.8, u/ = 0 deg, (b) p = 0.8, u/ = 45 deg, (c) p = 0.8,
¥ = 90 deg, (d) p = 0.8, ¥ = 135 deg, and (e) p = 0.8, ¥ = 180 deg.

SNR' -

L L ,.,[i,.yjej(A?pl_--A¢l J )2PTt EL=t 7_ + Ei=l E_g; (-:,2C2C2
_c --_ c --s y

(4t)

where Cc,Csc, and Csv are the carrier, subcarrier, and symbol reduction functions, respectively. The

unconditional symbol SNR is obtained by integrating Eq. (41) over the density functions for ¢21,'", _L1

and the loop errors Oc,¢sc, and _sy. In order to simplify this computation, the loop errors and phase

estimates are generally assumed to be independent. Taking expectation with respect to each of these

quantities separately yields an expression for the unconditional symbol SNR, namely

SNR - 2P_1 c_ c_ c_,
Nol R,ym

_L=I .),2 '4"-ELI EL_ "fi"[j Cj(/x_''-/x¢'j) .p(Z_(_lL) ]% + _--_L=I L ej(A¢,,--A¢,j)'P(ACti)'"

x dA¢12""dAddlL
(42)
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where the density functions p¢(A¢li) are as given in Appendix A. Finally, taking the ratio of Eq. (42) to

the ideal SNR, Eq. (25), yields the degradation for full-spectrum combining:

Disc = C 2 CP-C 2
sy

x dAIt2.., dA¢l L GA 1 (43)

Note that Disc is equal to one in the upper limit, where AIu = 0 for i = 2,-. •, L and C 2 = C2c = C2y = 1.

The second moments of the reduction functions 2 2C_, Csc, and C2 u can be expressed in terms of the loop

SNRs of the three loops, and are given in [1].

C. Simulation Results

A simple two-antenna array was simulated under conditions of correlated noise to verify the analysis

given above. The symbol SNR of the combined data was measured using the split-symbol moments

estimator and divided by the ideal symbol SNR to obtain measured degradations. The signal parameters

used were PT1/No, = PT2/No2 = 25 dB-Hz, Rsurn = 200 symbols per second (sps), and A = 90 deg.

The carrier, subcarrier, and symbol loops were operated with bandwidths of 3.5, 0.75, and 0.15 Hz,

respectively, with a symbol window of 1/2. The correlation coefficient between the noises, p, and the

relative noise phase, ¢, were varied over a range of values.

Figure 11 shows simulation values along with curves describing analytical results for a "high" correla-

tor SNR. The correlation bandwidths and integration time were chosen so that degradation resulting from
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imperfect phasing is negligible compared to the carrier, subcarrier, and symbol losses. The curves show

that more degradation is incurred with increasing noise correlation for _b = 0 deg, and that degradation

decreases as p increases for ¢ = 180 deg3 This can be explained by noting the effect of varying p and ¢ on

the arraying gain. For _b = 0 deg, increasing p causes a decrease in arrayed symbol SNR, as explained in

Section III.A. The loop SNR of the three loops, therefore, decreases, resulting in more carrier, subcarrier,

and symbol loss. By contrast, when _b = 180 deg, increasing p increases the combined PT/No and raises

the three loop SNRs. This results in less degradation in demodulating the signal. Since the correlator

SNR is high in this example, the demodulation losses are the dominant source of degradation, and the

trend shown in Fig. 11 is thus explained.

Figure 12 shows the same results performed for a relatively "low" correlator SNR. Here, the degradation

curve for _b = 180 deg actually lies below the curve for _b = 0 deg. This result, although seemingly counter-

intuitive, can nevertheless be explained qualitatively. Note from Eq. (41) that the phase error terms A¢1_

appear in both the numerator and the denominator of the SNR expression; the phase errors affect both

the arrayed signal power and the arrayed noise power. This is in contrast to the uncorrelated noise case,

where only the numerator depends on the phase errors A_bli; since the noises are uncorrelated, the choice

of phases used in combining them does not affect their arrayed power. The phase errors A¢1_ always

decrease the arrayed signal power, but can decrease or increase the arrayed noise power, depending on

the phase parameter ¢. For ¢ = 180 deg, the noise power is increased by errors in estimating ¢1=,

since phasing the array perfectly results in maximum noise cancellation. Therefore, estimating the phase

imperfectly results in a twofold penalty: The combined signal power is lessened, and the combined noise

power increases. This results in increased degradation due to imperfect phase alignment. On the other

hand, when _b = 0 deg, phase misalignment decreases the arrayed noise power. Since ¢1= = ¢_= in this

case, aligning the signals imperfectly also lessens the constructive addition of the noise. The reduced

noise power due to phasing errors, therefore, has a mitigating effect on the degradation incurred.

It should be noted that the fact that the _b = 180-deg case has more degradation than the ¢ = 0-deg

case in this example does not mean that the overall performance of the array is worse for ¢ = 180 deg.

Recall that degradation is defined as the deviation from the ideal arraying gain, GA. In the above example,

4 The phrase "decreasing degradation" is used loosely to mean decreased synchronization losses; in actuality, numerically

lower degradation implies greater losses incurred.
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although the degradation for _b = 180 deg is slightly higher, the ideal gain is substantially higher than it

is for _ = 0 deg. Thus, to determine the absolute performance for the array in terms of total combined

SNR, both the ideal gain and the degradation must be accounted for.

IV. Complex-Symbol Combining Performance

A block diagram of the complex-symbol combining arraying scheme is shown in Fig. 13. Each signal

is open-loop downconverted to baseband with quadrature tones and tracked by separate subcarrier and

symbol loops. Since the carrier is not tracked coherently, each signal consists of both an 'T' and "Q"

component, which can be thought of as a single complex signal. Furthermore, since subcarrier and symbol

tracking are performed in the absence of carrier lock, the loop SNRs of these loops are different from the

case where the carrier is tracked first. Two types of subcarrier and symbol loops that may be used in

complex-symbol combining are discussed in [2]: the conventional, or "I" loop, which uses only one of the

two signals in the complex pair to track, and the "IQ" loop, which uses both real and imaginary channels.

We will assume the IQ loops are used, since they have higher loop SNRs.

The matched filter outputs consist of data modulated by complex baseband tones. These complex

symbols are transmitted to a central location for combining. As in the case of full-spectrum combining,

correlations are performed to phase align the carriers, after which the signals are weighted and summed

coherently. A baseband Costas loop is finally used to demodulate the carrier.

Since the ideal arraying gain GA is independent of which arraying technique is used, the expression

computed in Section III.A is valid for complex-symbol combining also. Thus, it is only necessary to

evaluate the degradation for CSC, taking into account combining and demodulation losses. Once again,

the presence of correlated noise creates complications in phasing the array. A technique similar to the one

used for FSC can be employed to reduce the biases in estimating the relative signal phases, as discussed
below.

A. Antenna Phasing

The complex-symbol stream from the ith antenna is given by

: d(k) e + *,(k) (44)
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where C8c, and Csu, are the subcarrier and symbol reduction functions for the ith receiver, Ts is the

symbol time, and Ni(k) is the noise output from the ith matched filter. Taking the complex product

between the 1st and ith streams yields

Z = _2"l(k)'ift'(_ ) ---- V/_lPDiC,gciCsciCsylCsyi Jr/_'s,n(k) Jr ]_/r,(k)/_t*(k) (45)

where the signal-noise term l{ls,,(k) has zero mean. Once again, the complex-noise product 191(k)N_(k)

has nonzero mean if the correlation coefficient is nonzero and introduces a bias to the signal correlation

vector. Note, however, that the spectrum of the signals at the point of combining, Yi(k), does not contain

empty bands as in the case of full-spectrum combining. Demodulating the subcarrier collapses all the data

sidebands to baseband, allowing a much narrower combining bandwidth. Since the shared information

rate for CSC is equal to the symbol rate, there is no excess bandwidth that can be used to measure the

correlation of the noise alone. This problem may be solved by adding an extra matched filter for each

receiver to capture noise only. Before investigating this possibility, however, we calculate the expectation

of the noise product, Z[1Vi(k)N;(k)].

Consider the block diagram of Fig. 14, which shows the processing for complex-symbol combining up

to the matched filter outputs. The signal si(t) is the subcarrier reference from the ith subcarrier loop,

given by

s_(t) = sqr(a),_t + 0,_ + ¢_) (46)

where Osc is the instantaneous subcarrier phase and Csc, is the instantaneous phase error in the ith loop,

for i = 1,- • •, L. The limits of integration for the ith matched filter are given by

t,, = kTs + ..r, (47)

t,,, = (k + 1)Ts+ _ (as)
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Fig. 14. Matched filter noise outputs for CSC.

where Ti is the timing error in the ith symbol loop. The matched-filter noise samples are, therefore, given
by

(k+l)T_+ri
1

/ fii(t) sqr(wsct + 08c+ Csc_) dt (49)
k T, + ri

(k+l)T.+r_

o1 /Arj(k) = _ fij(t) sqr(_o_t + 0_ + ¢_3) dt (50)
kT,+rj

The conditional expectation of 2)i(k)N;(k) given the subcarrier and symbol timing errors can then
be calculated by combining the above expressions with the cross-correlation function for the complex
baseband noises, i.e.,

(51)

yielding

= _E _,(u)s,(.) _;(v)sj(v) d. d_
kT. +ri kT_+vj

(k+l)T_+r, (k+l)T,+r_

-- rs2 / / _(u-- v) si(u)sj(v) du dv

kT_+r_ kT.+rj

tmax

T] / _,(_)_(v) dv
t,nln

_ OQje j¢'_

(52)
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where the limits of integration of v are given by

tmi, = max(kT_ + ri, kT_ + rj) (53)

tm_ = min ((k + 1)T_ + T_, (k + 1)Ts + Tj) (54)

Finally, integrating with respect to v yields

_ _ 1 t._ (56)
/

= _ije j_'5 R_m C_c,, Csu,j (57)

Note that, in the absence of phase errors in any of the loops, Eq. (57) reduces to aijeJ_$JRsum, which is

simply the cross-power spectral density of the noises 5_(t) and 5j(t) times the effective bandwidth of the
matched filter. Thus, in addition to reducing the effective signal power at the matched filter output, the

subcarrier and symbol phase errors also reduce the noise correlation at this point.

Calculating the unconditional covariance of the matched filter noises requires taking the expectation

of Eq. (57) with respect to the phase errors ¢sc,, ¢_, ¢_,, and ¢_uj. Two approximations are made to
perform this computation. First, the densities of the phase errors are assumed to be Gaussian. This
condition is nearly satisfied for loop SNRs above 10 dB and is consistent with the approximation made in

[1]. Second, the phase errors of all loops are assumed to be mutually independent. This statement is not
strictly justifiable, since the subcarrier and symbol loops from a single receiver are affected by the same
noise and, furthermore, because the noises viewed by separate receivers are correlated. Nevertheless, it is

invoked for the purpose of making a first-order approximation to evaluating the unconditional covariance.

The quantities Csc, - Csc, and ¢8_, - ¢8y_ are then Gaussian-distributed with known mean and variance,

and the unconditional expectation E[Ni(k)N3* (k)] becomes

1 2 _ ",, 1/2_

(58)

Equations (58) and (45) can be combined to calculate the ratio of the signal-to-noise correlation magni-

tude, analogous to that computed in (29):

ISI _/_IPDi C, c1 _)Ysy I C8c ` C$_li 1 (E_E_,'_ '/2
"_ p_--]\No, No,]

(59)

where E_/No = PDT_/No is the bit SNR. In making the approximation of Eq. (59), the effects of synchro-
nization have been ignored for simplicity. This result provides a useful rule of thumb for determining if the
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noise correlation is a significant bias in estimating the relative signal phase. If ISI/INI is much less than
1, then an extra correlation is needed to compensate for the noise vector, as mentioned earlier. On the

other hand, if this quantity is much greater than 1, then it is unnecessary to add the extra matched filter

channel to perform the noise-only correlation. Note that collapsing all the data sidebands to baseband

and performing matched filtering before the correlation takes place substantially decreases the correlation

bandwidth relative to that of the FSC scheme described in [2]. The full-spectrum combining scheme can

optionally be modified to employ a similar strategy by using a series of matched filters for each subcarrier

harmonic, as discussed earlier. Estimating the degree of correlation p that will be observed for a particular

antenna pair and applying the rule described above will indicate whether or not the noise contribution to
the total correlation is substantial and must be compensated for by performing an additional correlation.

Here we briefly describe how the extra matched-filter outputs can be used to measure the noise cor-

relation: The complex baseband signal from each antenna can be shifted in frequency so that an empty

portion of the spectrum is located at baseband. This may be accomplished by shifting by an even multiple
of the subcarrier frequency, i.e.,

-! t i ..Yi()= (V/-P-_'ej(_'t+O_) + JV/-P-_D,d(t) sqr(wsct + Osc)e j(_t't+°') + hi(t))eJN_'_t= g:(t) + fi:(t) (60)

where N is an even integer. The shifted signal can then be multiplied by the subcarrier reference from

the ith antenna and passed through a matched filter using timing from the ith symbol loop, as shown in
Fig. 14. Thus,

fi[[(t) = 1 f(k+l)T_+r, fi_(t) sqr(wsct + _8c + ¢_c_) dt
Ts JkT_+n (61)

From the above analysis, it is clear that E[IV_(k)IV](k)] will be given by Eq. (58). Correlating the two

noise-only matched filter outputs then yields a quantity that can be subtracted from the total correlation,
Z, to compensate for the noise bias. The density function for the phase estimate computed using this

technique is similar to the FSC case and is analyzed in Appendix B. Note, however, that performing
this compensation requires increasing the combining bandwidth beyond what is required for CSC in the

uncorrelated noise case, as well as additional hardware to process the extra channel containing noise only.
A tradeoff in performance versus complexity must, therefore, be made to determine if complex-symbol
combining is an attractive option when correlated noise is present.

B. Arrayed Symbol SNR and Symbol SNR Degradation

An expression for the conditional arrayed symbol SNR can be obtained in a similar manner as is the

full-spectrum combining case. The combined signal for complex-symbol combining is given by

L

i=I

(62)

The conditional signal power, defined as E[Scomb(k)]E['Scomb(k)] ' is given by

Pcomb = PDL 2 2 2 E

_k i=1 i=l j=l

(63)
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where, as before, A_li is defined as the error in estimating the phase difference between the 1st and ith

signal, ¢1i - ¢1i. The one-sided power spectral density of the real and imaginary parts of Ncomb(k) is

given by

No = T_ Vat
i=1

(64)

Using the relations

(65)
=

E[£(k)9;(k)] p,j (66)
= Ts Csco Cs_,j

Eq. (64) can be shown to be equal to

Nro =No, 7i+EE_pijC_c,,C_u,jej_O,ieJ(a¢ , a¢_,)
i=1 i=l i=1

(67)

Taking the ratio of Eq. (63) to Eq. (67) then yields the combined PD/No for CSC. The combined signal

is finally processed by a baseband Costas loop, and the conditional SNR adding in carrier losses is given

by

SNR I =

C ej(A¢_-A_D
2Pv, EL='-2C2 2 + EL=IEL:_ 3,iTjC,_,Cs_j,_sy, s_, 2 (68)"h sci Csyi Cc

No1Rsym

Computing the unconditional symbol SNR requires taking the expectation of the above quantity with

respect to the phase errors ¢_, and ¢_y, for i = 1,..., L, the phase estimates O_l, for i = 2,- .-, L, and

the carrier phase error ¢c- Once again, we assume all loop phase errors and phase-aligning errors are

mutually independent. Thus, integration over the carrier phase error ¢_ is accomplished easily by consid-

ering the carrier reduction function C 2 separately. However, unlike the case of full-spectrum combining,
the subcarrier and symbol phase errors appear in both the numerator and the denominator. The expec-

tation with respect to the subcarrier and symbol phase errors, therefore, cannot be given in closed form.

Calculating the unconditional symbol SNR for even a simple two-element array would thus require a fifth-
order numerical integration. Rather than resort to such brute-force tactics, we make further simplifying

assumptions to allow evaluation of some of the integrals in closed form.

In taking the expectation with respect to the ¢_, and Cs_ terms, we apply the approximation

E _ E[yl

to the ratio of Eq. (68), yielding
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SNR - 2Pdl
Nol R_m

×E+ -Eqb_,_y[_ JELl "f2Cs2ci as2y i q- EL=I EL_ _/i_/jCsc, CscjCsy_CsyjeJ(A¢il-Ad>Jl)]] __

E,_.c,_._],_ JELl _i q- EL=I EL_ _Pijesc,jOsyij eJ',biJej(A¢l,--A¢lj)] J C_

(7o)

where _sc is the set of subcarrier phase errors Csc, for i = 1,-. •, L, _u is the set of symbol phase errors

Csy, for i = 1,-.. ,L, and _ is the set of phase estimates ¢1i for i = 2,..-,L. The approximation of

Eq. (69) is reasonable if the mean of y squared is much greater than the variance of y (i.e., if y is nearly

a constant). This condition is met for the case under consideration, since it is implicitly assumed that

the loop SNRs of the subcarrier and symbol loops are high enough to maintain lock, with 13 dB being a

typical threshold. Thus, the variances of the reduction functions C_¢ u and C_y,j, which contain the loop
phase errors, will be small compared to the mean of the entire denominator term.

By the above argument, the unconditional SNR can be evaluated as

2PD] --

SNR-No, R_y m C_

] "EL1 2 2 ....X ... L L "

-Tr -Tr Ei=I _i Jr ELI E_ _pijCsc,j Csy,jeJ¢'ej(A¢_'-ACu)

× p(A¢12).-.p(A¢IL)] dAOl2'"dA01L (71)

The ideal symbol SNR for complex-symbol combining is identical to that for full-spectrum combining;

since SNRideat is defined as the SNR that would be obtained in the absence of synchronization errors,

its value is independent of the order in which combining and demodulation occur. Thus, the degradation

for complex-symbol combining is found by combining the results of Eq. (71) with Eq. (25), yielding

Dcsc =C2_

X p(A¢12).- .p(A¢IL) ] dA¢12.., dA¢l L GA 1 (72)

C. Simulation Results

Simulations of a two-antenna complex-symbol combining system were performed. The signal pa-

rameters used were the same as those used for the full-spectrum combining simulations: PT1/No_ =
PT2/No2 = 25 dB-Hz, R_m = 200 sps, and A = 90 deg. The loop bandwidths were also set as before; the
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carrier, subcarrier, and symbol loop bandwidths were 3.5, 0.75, and 0.15 Hz, respectively, with a symbol

window of 1/2. Both the compensating and noncompensating methods of estimating the signal phase

difference were implemented. In Figs. 15 and 16, simulated and analytical degradation values are shown

for various values of p and ¢.

For the uncompensated case, the degradation curve drops down sharply for _b = 90 deg and _b =

180 deg. One cause for this is the bias in the complex correlation used to estimate the relative signal

phase. For the parameters being used, [SI/[/VI, given by Eq. (59), is equal to 3.15 for p = 0.5. Thus, the

noise vector is of comparable but lesser magnitude to that of the signal in estimating the phase. Note

that for !b = 0 deg, the noise correlation phase is equal to the relative signal phase (¢ = Cn), and the

vectors S and/V are colinear (see Fig. 5). The noise vector, therefore, does not bias the measurement

away from the desired quantity, and the downward trend is not present.

For the compensated case, less overall degradation is observed. However, the _b = 180-deg curve still

drops down with increasing p. Recall from Section IV.A that imperfect subcarrier and symbol tracking

tend to decrease the power levels of the individual signals at the matched filter output and decrease the

correlation of the matched filter noises. When _b = 0 deg, this has a beneficial effect on the arrayed

SNR, since it reduces the coherent addition of the noise. By contrast, when _b = 180 deg, a high degree

of correlation between the noises is desirable, so that the noise cancels maximally. Thus, decreasing

this correlation lessens the arrayed SNR and causes more degradation. This explains the fact that the

_b -- 0-deg curve tends upwards with increasing p, while the _b = 180-deg tends downward. Note, however,

that the reverse trend is true of the ideal arraying gain, GA. For example, for p = 0.8, GA = 10 dB for
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Fig. 15. CSC degradation, phase uncompensated:
theory and simulation.

Fig. 16. CSC degradation, phase compensated:
theory and simulation.

V. Example: Galileo Scenario

In order to illustrate the major concepts presented in this article, the performance of full-spectrum

combining and complex-symbol combining is analyzed for the Galileo signal. An array of DSS 14, which

is a 70-m antenna, and DSS 15, a 34-m high-efficiency (HEF) antenna, is chosen for this example.

First, predicts for physical parameters describing the signal strength and degree of noise correlation are

developed. These quantities are then used to calculate the arraying gain and degradation for each of the

two schemes.
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A. Signal Parameters

In the case of the Galileo spacecraft, correlated noise will be contributed by Jupiter being in the beam

of both antennas. As discussed in Section II, the contribution of a background body to totM system noise
depends on its angular separation from the spacecraft and on its total flux, which varies with its distance

from Earth. Values for the Jupiter-Earth probe (JEP) angle and Jupiter-Earth distance can be found

from ephemeris information for the Galileo tour. For the purpose of this example, we select values that

maximize the noise contribution of the planet to estimate the impact of correlated noise in a worst-case

scenario. Thus, we assume the JEP angle is zero and that the Jupiter-Earth range is at its minimum

value during the tour, which is Rj = 4.0 AU. Using these values, the temperature contribution of Jupiter

for DSS 14 and DSS 15 are T_ 1 = 6.6 K and T_ = 1.4 K, respectively. Note that the temperature

contribution is higher for DSS 14 due to the greater aperture size and antenna efficiency.

The predicted signal parameters are as follows: (PT/No)I = 22.0 dB-Hz and (PT/No)2 = 11.6 dB-Hz

for the 70- and 34-m antennas, respectively; A = 90 deg; and Rs_m = 200 sps. Note that since we are

assuming that the planet and spacecraft are at their closest range, the spacecraft signal is also at its peak
strength, in addition to the noise contribution of Jupiter. The total system temperatures predicted for

DSS 14 and DSS 15 are 22.6 and 42.2 K, respectively. 5

To determine the degree to which the source is resolved on this array baseline, we must compare the

fringe spacing to the angular size of the source. In our example, the observing frequency fo is 2.3 × 109 Hz,

and the maximum possible projected baseline is the physical separation between the two antennas, which

is approximately 500 m. Thus, the smallest possible fringe spacing is 2.5 × 10 -4 rad. At a range of 4.0 AU,

Jupiter has an angular size on the order of 1 x 10 -3 rad. Since these values are comparable, we cannot

use either the long baseline limit or the short baseline limit in evaluating p (see Section I). However, for

the purpose of determining the impact of the correlated noise in the most extreme case, we overestimate

the degree of noise correlation using the upper bound on p, given by

p o.1 (;3)
V TIT2

B. Arraying Performance

Using the two PT/No levels and correlation coefficient p found above, the ideal arraying gain GA can

be computed as a function of ¢ using Eq. (25). A graph showing this relationship is shown in Fig. 17.

Note that the arraying gain in this example is much smaller compared to our previous examples of two

equal antennas, since the signal level of one antenna is approximately 10 dB lower than the other. For

_b = 0 deg, the correlated component of the noise adds maximally in phase, thus decreasing the arraying

gain. By contrast, the background noise interferes destructively for _b = 180 deg, resulting in greater
arraying gain. Since the correlation coefficient is relatively low in this example, the difference between

the best-case and worst-case scenarios is only about 0.45 dB.

Representative values for the carrier, subcarrier, and symbol loop bandwidths were chosen as 1.5, 0.4,

and 0.07 Hz, respectively. For full-spectrum combining, a correlation bandwidth of Boost = 2 kHz was

used, with a correlation time of 15 s. The total degradation for FSC as a function of _b is shown in Fig. 18,

along with simulation points. Because the correlation coefficient p is relatively low in this example, the

degradation is almost constant with respect to the phase parameter _b. The combined PT/No only varies
by roughly 0.4 dB as _b ranges from 0 to 180 deg; thus, the loop SNRs of the three loops also do not

change much, and synchronization losses remain essentially constant.

5 Predicts for noise and signal parameters were obtained from the Galileo S-Band Analysis Program (GSAP).
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The same signal parameters and loop bandwidths were used to simulate the complex-symbol combining

case. A slight variation of the basic scheme, known as complex-symbol combining with aiding (CSCA),

was implemented. This scheme is discussed in [2] as an option for arraying the Galileo signal. In CSCA,

the subcarrier and symbol references from the receiver tracking the stronger signal are used to track the

signal from the 34-m antenna as well. This technique can be used to perform complex-symbol combining

even if the 34-m antenna signal is too weak to achieve subcarrier and symbol lock on its own. Thus,

the loop SNRs for the 34-m antenna subcarrier and symbol loops are equal to the corresponding 70-m

antenna loop SNRs.

Equation (59) can be applied to determine whether or not the "noise-only" channel is needed to phase

the array. Substituting in values from above, we find

1 (Ssl Ss2)l/2 1 1 (PTt PT2) 1/2p _ _ p R,y,_ No, No: (74)

= 2.39 (75)

Thus, the magnitude of the noise correlation vector is less than but comparable to that of the signal

correlation vector. To illustrate the impact of the phase bias in aligning the signals, CSCA was simulated

with both the compensating and uncompensating method for estimating the relative signal phase. In

Fig. 19, we show the degradation for CSCA for these two cases. The correlation time used to estimate

the relative signal phase was 2 s. Note that a shorter estimation interval than the full-spectrum combining

case can be used here since the effective correlation bandwidth is equal to the data bandwidth of 200 Hz

as opposed to 2 kHz for FSC. For the compensated case, the degradation is essentially constant since,

once again, the noise correlation does not affect synchronization losses much. For the uncompensated

case, the degradation becomes greater as the difference between the noise and signal phase _b grows larger,

since the noise correlation begins to bias the phase estimate further away from the relative signal phase.

This effect can be seen graphically by referring once again to Fig. 5, where the complex-signal and noise

correlations are represented as vectors.
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VI. Conclusion

The effects of correlated noise on the full-spectrum combining and complex-symbol combining arraying

schemes have been analyzed. As seen in Section II, accurate modeling of the noise correlation properties

for a given antenna pair requires detailed analysis of factors such as the source structure and position,

the antenna gain patterns, and the geometry of the array. However, the correlation coefficient can be

determined easily in cases where the baseline is either very short or very long. These two extreme cases

can be used to obtain a rough idea of what degree of noise correlation can be expected for a given scenario.

Describing the correlation between the various antenna pairs in an array by the parameters Pij and

¢_j, expressions for the ideal arraying gain and arraying degradation were derived. Several important

differences from the uncorrelated noise case were noted. For a given set of signal levels (PT,/No,), the

ideal arraying gain when the noise is correlated may be higher or lower than when the noise waveforms

are independent. This reflects the fact that the noise may add constructively or destructively, depending

on the relative signal and noise phases (i.e., the _ij parameters).

In addition, correlated noise can have a significant impact on the synchronization processes used to

combine and demodulate the signals, which vary with the specific arraying technique used. Most notably,

a bias due to the noise correlation is present in the conventional method of estimating the relative signal

phases. Since the magnitude of this bias is proportional to the correlation bandwidth used, full-spectrum

combining is potentially more sensitive to this problem than complex-symbol combining, depending on

the specific method used to correlate the signals. A modified method of phase estimation, where the

correlation due to the noise alone is measured and compensated for, can optionally be employed for both
FSC and CSC, as necessary.
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Appendix A

Performance of the FSC Correlator

For full-spectrum combining, the phase difference between two signals is estimated by performing one

lowpass and one bandpass correlation, as described in Section III.B. After being filtered to some lowpass

bandwidth, Blp Hz, the signals from antenna 1 and antenna i are given by

_zm(t) =
Iv/-P_l -bJv/-fi-_ld(t) (4) kMk_lld sin?sct] e(Jwt÷01) _-nlpl(t)=

(A-l)

 lp,(t) = (A-2)

where the subcarrier is expressed in terms of its sinusoidal components that are passed by the lowpass

filter. The two signals passed through the bandpass filter of bandpass Bbp Hz contain only noise and are

given by

Ybpl (t) = hbpl (t) (A-3)
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9b,,,(t) = _bp,(t) (A-a)

The complex quantity used to estimate the relative signal phase ¢14 = 01 - 0_ is given by

Z = I+jQ

1 / ., B_, 1 /_ _,- Tco_r Ylp, Ylp, dt YbmYbp, dtBbp T¢o_

( ) 1/ ft. B,p 1/= _ + _H e j¢'' + _ (fis,,, + flip, ,p,) dt Bbp Tco_ nbp, nbp,- -* dt

In most cases, the contribution of the signal-noise term fis._(t) to the total noise power is much smaller

than that of the noise-noise terms, and can be ignored. This is especially true if the PT/No levels of the

two signals are very low, or if large correlation bandwidths are used. By the Central Limit Theorem,

the complex noise N can be approximated as Gaussian if the correlation extends over many independent

samples (i.e., if Tco_ is much greater than the inverse correlation bandwidths). After averaging, the
variance of the real and imaginary parts of 2V can be shown to be equal to

1(_i = Var(g_) -TcoT, B_p+ Bbp] (No,No, +_,cos2¢7,) (A-6)

AQ = Var(NQ) - TcoT_I (Btp +__bp ]B_p_(NolNo _a21,cos2¢,_i )" (A-7)

where NI and NQ are the real and imaginary parts of/V, respectively. The covariance of N_ and NQ can
be shown to be equal to

AIQ = Cov(Nl, NQ) -
Tcorr-- -- Blp + Bbp ]

(A-8)

Furthermore, it is clear from Eq. (A-5) that the means of the real and imaginary parts of Z are given by

InI : (V/-_lPci q- _H) cos(_li (A-9)

mQ = (v/-P--_Pc, + _H) sin¢li (A-IO)

Equations (A-6), (A-7), (A-9), and (A-10) can be combined to compute the correlator SNR as defined in
[1], i.e.,
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E[ZlE'[Z]
SNRcor,,Dc= E[ZZ*]- E[Z]E*[Z]

+
A1 + AQ

(A-11)

Equations (A-9), (A-10), and (A-6) through (A-8) can be used to determine the joint density function

pI,Q(I, Q). Since the density of _)l_ = tan-l(Q/I) is the desired quantity, we express the joint density
function in terms of polar coordinates, using the variable definitions

'_ X/_ Q2 (A-12)r ---- 4-

¢ _ tan-l(_) (A-13)

The density function for jointly Gaussian random variables is given in polar form by

¢)
r

27r(AI)_Q - AIQ)

Al(r cos¢ - mI) 2 - 2AiQ(rcos¢ - ml)(rsin¢ - mQ) + AQ(r sinq_ - rnQ)2hx exp 2(AIAQ - AIQ) ]

(A-14)

Integrating Eq. (A-14) with respect to r yields the marginal density of 4) alone. Expressing the phase

estimate density in terms of the estimation error A¢ = ¢1i - ¢1_ yields

( 1-p2c°s2_bh [l+v_G2eC_erf G2+l)]f¢(A¢) = Gt exp -SgRcorr,fsc 1 - p4 ]
A-15)

where

1 - p4

Cl = 21r (1 - p2 cos(2_b - A¢))
A-16)

cos A¢ - p2 cos(2¢ - A¢)

G2 = x/SNRcoT_,Isc (1 - p4)(1 - p2 cos(2_b - A¢))
A-17)
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Appendix B

Performance of the CSC Correlator

The method of estimating the relative signal phases for complex-symbol combining is analogous to

the full-spectrum combining algorithm; using the extra correlation to compensate for the noise bias, the
complex correlation can be expressed as

N N

z=_
k=l k=l

1 N

k=l

1 N N 1 N

+ -_ _ 4-P--_,c_c,%,_-J°'_;(k)+ y -' -,.
k=l k=l k=l

(B-I)

where N is the number of symbols averaged over, given by N = Tco,-,./Tsum, and the noise term/_" has

zero mean. The statistics of this noise can be analyzed in the same manner as before; here, the effective

correlation bandwidth for both the lowpass and the bandpass correlation is Rs_m/2. Using the definition
given by Eq. (32), the correlator SNR can be shown to be equal to

p_, Too._ __ _ __,_
SNR_o_,cs_ = No, C2 C2y, + C2 C2m (1/% ) + (No,/PD,)2R_m (B-2)

The density function for the phase estimation error can be found in a manner analogous to that applied

in Appendix A. The only difference is in the expression for the correlator SNR; otherwise, both problems
are inherently governed by the same mathematics. The density function for the phase estimation error

A¢I, is thus given by Eq. (A-15), with SNR_o_,-,I_ replaced by SNRco,-_,cs_.
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A Seismic Data Compression System

Using Subband Coding

A. B. Kiely and F,Pollara
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This article presents a study of seismic data compression techniques and a com-

pression algorithm based on subband coding. The algorithm includes three stages:
a decorrelation stage, a quantization stage that introduces a controlled amount of

distortion to allow for high compression ratios, and a lossless entropy coding stage

based on a simple but etBcient arithmetic coding method. Subband coding methods

are particularly suited to the decorrelation of nonstationary processes such as seis-
mic events. Adaptivity to the nonstationary behavior of the waveform is achieved

by dividing the data into separate blocks that are encoded separately with an adap-
tive arithmetic encoder. This is done with high e_ciency due to the low overhead

introduced by the arithmetic encoder in specifying its parameters. The technique
could be used as a progressive transmission system, where successive refinements of

the data can be requested by the user. This allows seismologists to first examine

a coarse version of waveforms with minimal usage of the channel and then decide

where refinements are required. Rate-distortion performance results are presented

and comparisons are made with two block transform methods.

I. Introduction

A typical seismic analysis scenario involves collection of data by an array of seismometers, transmission
over a channel offering limited data rate, and storage of data for analysis. Seismic data analysis is

performed for monitoring earthquakes and for planetary exploration, as in the planned study of seismic
events on Mars. Seismic data compression systems are required to cope with the transmission of vast

amounts of data over constrained channels and must be able to accurately reproduce both low-energy

seismic signals and occasional high-energy seismic events.

We describe a compression algorithm that includes three stages: a decorrelation stage based on subband

coding, a uniform quantization stage, and a lossless entropy coding stage based on arithmetic coding.
Rate-distortion performance results are presented and comparisons are made with two block transform

methods: the discrete cosine transform (DCT) and the Walsh-Hadamard transform (WriT).

Subband coding methods are particularly suited to the decorrelation of nonstationary processes such as

seismic events. For most seismic data, signal energy is more concentrated in the low-frequency subbands,

which suggests the use of nonuniform subband decomposition. The decorrelation stage is implemented

by quadrature mirror filters using a lattice structure. Adaptivity to the nonstationary behavior of the
waveform is achieved by dividing the data into blocks that are separately encoded.
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The compression technique described in this article can be used as a progressive transmission system,
where successive refinements of the data can be requested by the user. This allows reconstruction of a

low-resolution version of the waveform after receiving only a small portion of the compressed data. This

could allow seismologists to make a preliminary examination of the waveform with minimal usage of the
channel and then decide where high-resolution refinements are desired.

In general, given a fixed transmission rate, lossy compression algorithms applied to high-accuracy

instruments deliver higher scientific content than lossless compression methods applied to lower accuracy
instruments.

II. Subband Decomposition

In the analysis stage of subband coding, a signal is filtered to produce a set of subband components, each

having smaller bandwidth than the original signal. Because of this limited bandwidth, each component is

downsampled, so that the subband transformed data contain as many data points as the original signal.
The subband components are then quantized and compressed. In the synthesis stage, the reconstructed

signal is formed by adding together the subbands obtained by applying the inverse filters to upsampled
versions of the subband components.

The analysis and synthesis filters used here are finite impulse response (FIR) quadrature mirror filters

(QMF) implemented using the lattice structures shown in Figs. 1 and 2, which are described in [7,1].
Analysis and synthesis quadrature mirror filters of order 2M are implemented using an M-stage lattice

structure. Suitable lattice filters can be found in [1, p. 267] and [7, p. 310].

E
m

_Q
t

Fig. 1. Analysis filter structure. (The stage inside the box is repeated.)

I 7

[ , I

i/% i
I j

Fig. 2. Synthesis filter structure.
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For most seismic data samples, signal energy isconcentrated primarily in the low subbands. 1 Figures 3

and 4 give two periodograms (power spectral density estimates [4])for seismic data. The uneven dis-

tribution of spectral energy in seismic signals provides the basis for subband coding source-compression

techniques. For effective signal coding, subspectra containing more energy deserve higher priority for

further processing.

A subband decomposition that tends to work well for seismic data is the dyadic tree decomposition

shown in Fig. 5. The signal is first split into low- and high-frequency components in the first level. A

two-band subband decomposition uses high-pass and low-pass digital filters to decompose a data sequence

into high (H) and low (L) subbands, each containing half as many points as the original sequence. The

filter is repeated to further decompose the low subband. This process may be repeated several levels.

1
O -20
Q_

_< -40

=_o

-60
0 rJ4 rJ2 3r,J'4

NORMALIZED FREQUENCY

Fig. 3. Periodogram of 1024-point EHZ (100 samples/s) data sample
containing seismic event.

0 i i i

en
"o
t_

O -20

8

-60
0 _4 _/2 3_4

NORMALIZED FREQUENCY

Fig. 4. Periodogrsm of 1024-point BHZ (20 samples/s) data sample
containing seismic event.

1This generally applies to the event (EHZ) and broadband (BHZ) seismic data components, which have sample rates of
100 and 20 samples/s, respectively. Energy in long-period (LHZ) data, which has a sample rate of only 1 sample/s, is

typically not as concentrated in the low frequencies. However, because of the much lower sample rate, compression of this
component is not as important as the others. A different subband decomposition could be implemented to accommodate

this type of data.
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LLL

LLH

Fig. 5. Subband decompositions.

Increasing the number of subbands produces diminishing rate-distortion returns, with gains often

observable only at very high compression ratios. One reason for this is that, after several decompositions,
the energy is no longer so highly concentrated in the lowest subband.

So that a filtered block has the same length as the original, each block is periodically extended (i.e.,

repeated in time) before filtering, and the components corresponding to a single period of the filtered

extended signal are taken as the filtered signal. If this operation were not performed, the length of the

filtered signal would exceed the original block length. An unfortunate side effect of periodic extension

is that it often produces high-frequency components at the edges of data blocks, an effect whose impact

increases with filter length. These components are not as easily compressed as the rest of the subband data

and are separated for compression purposes. Longer filters are also more likely to introduce noticeable
spurious effects at the onset of a high-energy seismic event, as we shall see in Section VI. It is also worth

noting that longer filters generally do not dramatically outperform shorter filters, as we will see in the

following section.

III. Comparing Subband Coding to Block Transforms

For comparison purposes, we also examined the discrete cosine transform (DCT), a popular technique

used in the compression of two-dimensional data (e.g., images). A general description of the DCT as used

in the Joint Photographic Experts Group (JPEG) compression algorithm can be found in [5, pp. 113-128].
The DCT can also be applied to one-dimensional data, as is done here.

The data are partitioned into blocks of length 8, the DCT of each block is computed using the 8 x 8

DCT matrix, and these transformed values are uniformly quantized. A different quantizer step size could
be used for each coefficient, but in practice, for most seismic data samples, near-optimum performance

is obtained when all quantizers use the same step size. The quantized coefficients are arranged in groups

of 8 blocks for subsequent coding, so that 64 transformed coefficients are encoded at a time. In this way,

the procedure is similar to a one-dimensional version of the JPEG algorithm. The lowest frequency (dc)

quantized coefficients are encoded using differential pulse-code modulation (DPCM) and Huffman coding,

except at very low rates, when a run-length code is used. The remaining (ac) coefficients are run-length

encoded, in order of increasing frequency. The run-length encoding used is the same as that described in
[5, pp. 114-115].

We also used the same algorithm with an 8 × 8 WHT in place of the DCT, separately encoding
each coefficient. The WriT performed uniformly worse (see Fig. 6). To make a fair comparison with

subband coding, we compared the block transform compression methods to subband coding combined

with Huffman coding of the quantizer output, rather than the arithmetic coding procedure to be described
in the next section.
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Fig. 6. Rate-distortion performance for various compression techniques applied to a seismic data sample:
(a) comparhlon with block transform methods and (b) comparison of different subband decompositions.

Rate-distortion curves for a seismic data sample using these different techniques are shown in Fig. 6.

The labels on the curves corresponding to subband coding identify the number of subbands and the

particular filters used. For example, "3BSL" refers to a three-band decomposition using an order-8 FIR
filter. In terms of root-mean-square error (RMSE), subband coding is able to outperform the DCT and

WriT with only moderate complexity.

IV. Entropy Coding Stage: Arithmetic Coding

Anyone who has experienced an earthquake knows that the energy present in a seismic signal can vary
tremendously over time. Consequently, seismometers have a large dynamic range, and it is desirable to

have an adaptive compression system capable of transmitting low-energy and high-energy signals reliably.

A block of m data samples produces m subband coded samples. Because of the downsampling oper-

ation, half of these are high-subband samples, one-fourth are low-high-subband samples, etc. All of the

samples from a particular subband are quantized and encoded together block adaptively. Because this is

a block-to-block encoding procedure, the effects of a channel error are confined to the block during which
that error occurs. The block encoding provides the additional benefit of adaptivity.

The output of the subband coding stage is a sequence of real numbers that are quantized and then

compressed. For seismic data, as with many other types of data, these components are generally zero-

mean, roughly symmetric, and have a probability density that is decreasing as we move away from the

origin. This is illustrated in Fig. 7, which gives an empirical probability density function (pdf) of signal

amplitude from a low-pass-filtered seismic data sample.

The compression scheme we use is bit-wise arithmetic coding [2]. A high-resolution quantizer is used,

and the quantized values are mapped into fixed-length binary codewords. Figure 8 illustrates the bit

assignment for a four-bit quantizer: The first bit indicates the sign of the quantizer reconstruction point,

and each successive bit gives progressively higher resolution information. Because the pdf is zero mean

and decreasing as we move away from the origin, a zero will be more likely than a one in every bit position.

This redundancy is exploited using a binary arithmetic encoder to achieve compression.
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Fig. 8. Codeword assignment for the four-bit quantizer.

Codewords corresponding to each subband are grouped together. The sign bits of the codeword se-

quence are encoded using a block-adaptive binary-input binary-output arithmetic encoder described in

[2]. The next most significant bits are similarly encoded, and so on. Each bit sequence (or layer) is en-

coded independently-- at the ith stage the arithmetic coder calculates (approximately) the unconditional

probability that the ith codeword bit is a zero.

The obvious loss is that we lose the benefit of interbit dependency. For example, the probability that

the second bit is a zero is not in general independent of the value of the first bit, though the encoding

procedure acts as if it were. Traditional Huffman coding of the quantized samples does not suffer from

this loss. However, for many sources, such as Gaussian and Laplacian sources, this loss is quite small [2].

In fact, for many practical sources with low entropy, this technique has lower redundancy than Huffman

coding, because the arithmetic coder is not required to produce an output symbol for every input symbol.

Because the interbit dependencies are ignored, very little overhead information is required (i.e., long

tables of Huffman codewords are unnecessary). The overhead required for bit-wise arithmetic encoding

increases linearly in the number of codeword bits. By contrast, the overhead of block-adaptive Huffman

coding increases exponentially in the number of codeword bits unless we are able to cleverly exploit

additional information about the source [3].

Another advantage is that, as we will see in the next section, this technique is naturally progressive. In

a progressive transmission system, each successive data segment transmitted provides higher-resolution

information about the signal. Using a buffer, we can choose to transmit only some of the data segments.

This provides a convenient method for trading rates between blocks, so that more resources can be devoted

to reproducing the high-energy signal blocks.
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V. Progressive Transmission Behavior

In designing a compression system to be used in progressive transmission or in situations where rate
constraints may result in the loss of data, it is important to consider the rate-distortion behavior of the

system when only portions of the compressed data have been received. Such performance can be improved

simply by careful choice of the order in which the compressed data are transmitted.

The typical characteristics of subband-filtered seismic data motivate our transmission strategy. Be-
cause the probability density for subband-filtered seismic data' is generally zero mean (see Fig. 7), the

sign bit layers of each subband usually have high entropy. Because the energy in seismic waveforms is
often quite small, the high-order bit layers (excluding the sign bit) often consist entirely of zeros or can be

readily compressed using the block-adaptive arithmetic encoder. Finally, as mentioned in Section II, peri-
odic extension of the data is required in the subband filtering stage, which often produces high-frequency

components at the start of data segments. These initial values, which we call transients, are encoded

separately from the rest of the data. All but the lowest subband contain these transients.

Generally speaking, we transmit compressed data ordered from the most significant bit layer to the

least significant bit (LSB) layer, and within this order, proceeding from the lowest frequency to the highest

frequency subband. Initially, we skip the sign bit layer and begin with the next most significant bit layer.
If this layer consists entirely of zeros (which is usually the case), a single "0" is transmitted and we move

on to the same layer in the next higher subband. For every subband, a "0" is transmitted for each layer

consisting entirely of zeros until a "1" is transmitted at some layer g, denoting that the gth layer is not

all zeros. At this point, we transmit the sign bits (using the block-adaptive arithmetic coding procedure

already described). Then the transients for the subband are transmitted using run-length encoding of the

leading zeros, and then the (compressed) gth bit layer is transmitted. Then we proceed to the gth layer

for the next higher subband. Each subsequent bit layer of the subband is sent, compressed by arithmetic

coding.

Because the order of transmission is determined using a rather simple decision procedure, the additional

overhead required to describe the transmission order is quite small--it consists only of occasional one-bit

flags. As an example, Fig. 9 shows a seismic data sample along with waveforms reconstructed from only

small portions of compressed data for a 51.2-s (1024-point) block.

The rate-distortion progressive transmission performance of this system for one seismic data sample

can be seen in Fig. 10. The highest rate point of each curve is the final design goal, and the rest of
the curve shows the rate-distortion performance when the signal is reconstructed using only portions of

the data. It is remarkable that the curves are nearly indistinguishable. Note that a system designed to

transmit at a rate of 5 bits per sample (bps) but cut off at only 2.5 bps performs almost as well as a

system designed to operate at 2.5 bps.

VI. Distortion Measures and Artifacts

In the previous sections, we have been mostly concerned with the mean-square error (MSE) distortion
measure. However, mean-square distortion may not be a sufficient indicator of fidelity for seismic analysis

purposes. For example, Spanias et al. [6] examined the effect of transform data compression methods on
estimation of the body wave magnitude, which they call "the key parameter used in seismic analysis."

Other distortion measures may be more relevant, depending on the interests of the seismologists who will

ultimately analyze the data. Unfortunately, we do not know of a distortion measure that seismologists

will widely accept as the most useful.

Artifacts are erroneous features that may appear in the reconstructed waveform. Different algorithms

create different artifacts depending on their modes of operation. For example, "blockiness" is an arti-

fact commonly associated with block transforms such as the DCT, while "ringing" may be produced by
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subband coding using a filter with a too sharp response. Even a given algorithm may exhibit different

artifacts depending on the bit rate at which it is operated. Some artifacts may be more objectionable

than others for correct waveform interpretation.

In this section, we illustrate two artifacts that may be observable in subband coding depending on

the mode of operation and the compression ratio. Understanding the causes and cures for such artifacts
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allows seismologists to give meaningful feedback to engineers in deciding what features of a compression

system are most important.

We are actively trying to engage the seismology community to characterize any essential artifacts pro-

duced by the proposed method [8]. One of the results of this interaction was the objection of seismologists

to the precursor artifact created by a particular subband filter, as shown in Fig. 11(b). After determining
that such an artifact was due to a filter with a too sharp response, we experimented with different, shorter

filters, producing the result shown in Fig. 11(c), which reduces the precursor problem while preserving

essentially the same compression ratio.

A different artifact is introduced when the quantizer step size is quite large (this equivalent effect may

occur if the waveform is reconstructed using only a portion of the data). In this case, each subband

will have low resolution, and because most of the energy is contained in the low frequencies, the high-

frequency subbands may all be zeroed out. This may produce the interesting smoothing effect that can
be observed in the periodogram of the reconstructed waveform shown in Fig. 12. If this frequency range

has more significance than the others, the corresponding subbands could be assigned higher priority in

the transmission and quantization stages.
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Fig. 11. Original and reconstructed waveforma for two different filters: (a) original, 24 bps,
(b) reconstructed, 0.8 bps, and (c) reconstructed, 0.8 bps (improved filter).
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The JPL DSN Microwave Antenna Holography System (MAHST) was applied to

the newly constructed DSS-24 34-m beam-waveguide antenna at Goldstone, Califor-

nia. The application of MAHST measurements and corrections at DSS 24 provided

the critical RF performance necessary to not only meet the project requirements

and goals, but to surpass them. A performance increase of 0.35 dB at X-band

(8.45 GHz) and 4.9 dB at Ka-band (32 GHz) was provided by MAHST, resulting in
peak efficiencies of 75.25 percent at X-band and 60.6 percent at Ka-band (measured

from the Cassegrain focus at fl ). The MAHST enabled setting the main reflector

panels of DSS 24 to 0.25-ram rms, making DSS 24 the highest precision antenna

in the NASA/JPL DSN. The precision of the DSS-24 antenna (diameter/tins) is

1.36 x 10 _, and its gain limit is at 95 GHz.

I. Introduction

The JPL Microwave Antenna Holography System (MAHST) (Fig. 1) [1] has become the leading tech-

nique for increasing the performance of the large NASA/JPL DSN antennas, especially at the shorter
wavelengths (X-band (8.45 GHz) and Ka-band (32 GHz)). The MAHST provides an efficient and low-

cost technique to optimize and maintain the performance and operation of the large DSN antennas,

providing far-field amplitude and phase pattern measurement with a 90-dB dynamic range, and enabling
high-resolution and high-precision antenna imaging with a standard deviation of 100 #m. The panel set-

ting/unbending screw adjustment is provided with an accuracy of 10 to 20/_m. Fast subreflector position
optimization is provided, which increases the antenna performance capacity and pointing accuracy. The
MAHST is a portable system that can be shipped to any DSN antenna around the world and can be

easily interfaced with its encoders and antenna drive systems. The MAHST was designed utilizing many
off-the-shelf commercially available components. The remaining parts were designed and built at JPL.
The MAHST has been successfully tested and demonstrated at the NASA/JPL DSN [1,2].

The microwave holography technique utilizes the Fourier transform relationship between the complex

far-field radiation pattern of an antenna and the complex aperture field distribution. Resulting aper-

ture phase and amplitude distribution data are used to derive various crucial performance parameters,

including panel alignment, subreflector position, antenna aperture illumination, directivity at various
frequencies, and gravity deformation effects [3,4]. Strong continuous wave (CW) signals obtained from

geostationary satellite beacons are utilized as far-field sources. Strong CW beacon signals are avail-
able on nearly all satellites at Ku-band (10.7 to 12.7 GHz), X-band (7.0 to 7.8 GHz), and C-band (3.7

to 4.2 GHz). A portable 2.8-m reference antenna (Fig. 1) is used as a phase reference and provides

the signal to the receiver phase-lock-loop (PLL) channel. The intermediate-frequency (IF) section of a
Hewlett Packard Microwave Receiver (HP8530A) and an external JPL-designed and -built PLL enable
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Fig. 1. MAHST block diagram.

precision amplitude and phase measurements of the ground antenna sidelobes with a 90-dB dynamic

range. The far-field data are collected by continuously scanning the test antenna against the signal

from a geosynchronous satellite, sampling a two-dimensional grid directly on the u, v (direction cosine)

space. Each subscan start position is updated in real time to track the predicted orbit position of

the geosynchronous satellite. The angular extent of the response that must be recorded is inversely

proportional to the size of the required resolution cell in the processed holographic maps. The data

processing provided with the system computes the desired information. 1 It is the information in the

surface error map that is used to compute the adjustments of the individual panels in an overall main

reflector best-fit reference frame. The amplitude map provides valuable information about the energy

distribution in the antenna aperture. A short summary of the theory is presented in Appendix A.

1 D. J. Rochblatt, A User Manual, Data Processing Software for Microwave Antenna Holography: Computer Programs for
Diagnostics, Analysis, and Performance Improvement of Large Reflector and Beam Waveguide Antennas, JPL D-10237

(internal document), Jet Propulsion Laboratory, Pasadena, California, January 15, 1993.
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II. Holographic Measurements and Results

The holographic measurements of DSS 24 were conducted during May 13 through 23, 1994 (Table 1).

Four high-resolution (33.7-cm), four medium-resolution (84.8-cm), and one low-resolution (172-cm) mea-

surements were performed (for a total of nine). Diagnostics, analysis, subreflector position, and panel

setting listing were all derived on site. The antenna panels were reset on May 19, 1994 (excluding panels

under the shadow areas of the quadripod). Eight measurements were made at the rigging angle of 46.3 deg,

from the antenna Cassegrain focus at fl, utilizing the beacon signal at Ku-band (11.9225 GHz) from the

GSTAR-1 satellite. Only one medium-resolution measurement at the low-elevation angle of 12.7 deg (fl

focus) was made due to the short time allocated for the holographic measurements. The beacon sig-

nal from the INTELSAT-V (307) satellite at Ku-band (11.7009 GHz) was utilized for the low-elevation

measurement.

The data acquisition time for the high-resolution maps required for panel setting was 6.5 h. The data

processing for obtaining panel setting information took 8 h. It took an additional 8 h to actually reset

the panels of the antenna. The measurement and data processing time required for subrefiector position

correction for a 34-m antenna is approximately 2 h (two iterations).

Table 1. DSS-24 holographic measurements.

Date File no. EL angle, deg Array size Remarks

5/13/94 DSN006 46.4 25 x 25 Subreflector correction

5/13/94 DSN007 46.3 51 x 51 Verification

5/14/94 DSN008 46.3 127 × 127 Panel setting derivation

5/16/94 a a --_ Briefing at JPL

5/17/94 DSN009 46.3 51 × 51 Geometry confirmation

5/18/94 DSN010 46.3 121 x 121 Repeatability verification

5/19/94 a a a Panel setting

5/19/94 DSN011 46.3 51 x 51 After panel setting

5/20/94 DSN012 46.3 127 x 127 After panel setting and
touch up

5/22/94 DSN013 46.3 127 x 127 Bad scan

5/23/94 DSN014 12.7 51 x 51 Low-elevation map

a No measurement taken.

A. Subreflector Position Correction

Appendix B summarizes the theory of subreflector position correction via holography as applied at

DSS 24 (for a 70-m antenna, the processing is slightly different). The subreflector correction is derived

from the low-order phase distortions in the antenna aperture function derived from low-resolution (25 x 25

array for a 34-m antenna, or 51 x 51 for a 70-m antenna) holographic imaging. Since the derivation is

based on an iteration algorithm, two low-resolution measurements are required. The time required for a

single low-resolution measurement is approximately 45 min, and data processing time is 16 min. Figure 2

shows the far-field amplitude pattern of DSS 24 as found in the initial stage of the holographic measure-

ments, and Fig. 3 shows the same information after holographic corrections were applied. The corrections

that were derived and applied to the subreflector positioner are 0.516 in. in the -X direction, 0.375 in. in

the +Y direction and 0.135 in. in the +Z direction. From observing the far-field patterns in Figs. 2 and 3,

it is clear that the antenna went through a transformation from being unfocused to focused. The perfor-

mance improvement obtained by setting the subreflector is 0.25 dB at X-band and 3.6 dB at Ka-band. The
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Fig. 2. Far-field pattern recorded on May 13, 1994,
Indicating an unfocuaed antenna. (Color Image
available electronically.)

Fig. 3. Far-field pattern recorded on May 14, 1994, after
correcting the aubreflector position, Indicating a
focused antenna. (Color Imageavailable electronically.)

derivation of the subreflector correction in the X-direction was especially critical since no servo drive but

only manual mechanical adjustment is available for this axis (for DSS 24), and therefore the traditional
trial-and-error methods are not efficient. Figures 4 and 5 show a one-dimensional elevation cut of the

far-field amplitude pattern (11.9225 GHz) before and after corrections, respectively, that were made to

the subreflector. Figures 6 and 7 show a one-dimensional azimuth cut of the far-field amplitude pattern
(11.9225 GHz) before and after corrections, respectively, that were made to the subreflector.

Holography can derive the subreflector (X, Y, Z) position at any observation angle from which geo-
stationary satellites can be viewed. For the 70-m antennas, two tilt-angle corrections are also included.

In practice, usually three elevation angles are readily available from Goldstone (approximately 45-, 37-,
and 12-deg elevation). However, it is shown here that when the finite element model for the subreflector

offset is accurate (as is the case for DSS 24), adding to it a constant term derived at a single elevation
(e.g., 45 deg) creates a new model that is accurate over all elevation angles. Since the time allocated for

holographic measurement was minimal, only this derivation was possible. Derivation of the subreflector

offsets from the f3 focus position will compensate for any misalignment of the beam-waveguide (BWG)
mirrors, and thus may cause peak antenna gain to occur at different elevation angles, and away from the
rigging angle for different feed positions.

Equation (1) was derived 2 using a finite element modeling of DSS 24 for the subreflector offsets

(X, Y, Z) as a function of the elevation angle (EL):

X =0

Y = - 0.008{ sin (45) - sin (EL)} + (-1.485){ cos (45) - cos (EL)}

Z = - 0.164{ sin (45) - sin (EL)} + (-0.004){ cos (45) - cos (EL)}

/ (1)

2 R. Levy, "DSS-24 Subreflector Positioner Offsets," JPL Interoffice Memorandum 3323-94-032 (internal document), Jet

Propulsion Laboratory, Pasadena, California, February 16, 1994.
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In Eq. (2), a constant term derived by holography at 46.3-deg elevation (and one iteration) is added to

Eq. (1):

%

X = - 0.516 /

Y = 0.375 - 0.008{ sin (45) - sin (EL)} + (-1.485){ cos (45) - cos (EL)}

Z = 0.135 - 0.164{ sin (45) - sin (EL)} + (-0.004){ cos (45) - cos (EL)}

(2)

Holography and radiometry should derive the same subreflector offsets at approximately 45-deg ele-

vation. (Note that holography did not optimize the subreflector position after panel setting due to time

constraints imposed on the project.) Under these conditions, the maximum deviation in the equation

for the Z-axis is 0.03 in. at 10-deg elevation, which translates to 0.045 dB at Ka-band. The remaining

terms in the equation for the Y-axis deviate by 0.07 in. at 80-deg elevation, which translates to 0.02 dB

at Ka-band (Fig. 8).
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B. Panel Setting

The theory of panel setting as used at DSS 24 is described in [5]. Figure 9 is the mechanical surface

error map of DSS 24 derived from the measurement on May 14, 1994 (DSN008). The normal rms surface

error of the inner 32-m diameter at a resolution of 33.7 cm is 0.50 ram. Panel settings were derived from

this scan (DSN008) after verifying repeatability (scan DSN010) and confirming coordinate geometry and

pixel registering accuracy. Panels 1, 7, 13, and 19 in ring 2 (counting 1 from the center and 9 as the

outermost ring) were installed last and can easily be distinguished (they are 90 deg apart). Figure 10 is

the mechanical surface error map of DSS 24 derived from the measurement on May 20, 1994 (DSN012)

after panel setting. The normal rms surface error of the inner 32-m diameter at a resolution of 33.7 cm

is 0.258 mm, and the infinite resolution axial error is 0.25 mm. The precision of DSS 24 (diameter#ms)

is 1.36 x 105, the highest of the NASA/JPL DSN antennas. The performance improvements achieved

via holography by resetting the DSS-24 surface and positioning the subreflector are 0.35 dB at X-band

and 4.9 dB at Ka-band; these improvements are summarized in Table 2. The efficiency of DSS 24 at

the nominal elevation angle of 45 deg was increased from 68.83 percent to 74.61 percent at X-band (f3

referenced to horn aperture) and from 19.83 percent to 61.29 percent at Ka-band (f3 referenced to horn

aperture). Figure 11 shows the gain loss of DSS 24 due to main reflector surface errors (using the Ruze

equation [6]) before and after panel setting. Figure 12 is a plot of DSS-24 gain (from f3) versus frequency,

indicating that its gain limit is at 95 GHz. As can be seen from Table 3, 3 the MAHST provided the

critical RF performance necessary not only to meet the project requirements and goals, but to surpass
them.

Figure 13 is the predicted surface error map of DSS 24 derived from the measurement on May 14,

1994 (DSN008), indicating that an rms surface error of 0.20 mm could have been achieved if the panel

3 The "expected" values in this table were supplied from notes by W. Veruttipong, Ground Antennas and Facilities En-

gineering Section, and D. A. Bathker, DSN Advanced Planning Office, "DSS-24 RF Optics Design Detailed Gain/Noise
Budgets for S/X K&-Bands," Jet Propulsion Laboratory, Pasadena, California, February 7, 1992.
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Fig. 9. High-resolution (33.7-cm) error map of the
central 32 m of the antenna surface at 46.3-deg
elevation, before panel setting, as derived from scan
DSN008 (May 14, 1994). The normal, axial, andin.finite
resolution axial rms errors are 0.60, 0.44, ana u.4rb ram,
respectively. (Color image available electronically.)

Fig. 10. High-resolution (33.7-cm) error map of the
central 32 m of the antenna surface at 46.3-deg
elevatlon, after panel setting, as derived from scan
DSN012 (May 20, 1994). The normal, axial, and infinite
resolution axial rms errors are 0.26, 0.23, and 0.26 mm,
respectively. (Color image available elsctronicaily.)

Table 2. Performance improvement by microwave holography at

approximately 45-deg elevation.

Frequency, GHz Panel setting, dB Subreflector, dB Total, dB

X-band, 8.45 0.1 0.25 0.35

Ka-band, 32 1.27 3.6 4.87

setting listing were executed precisely (the accuracy of the panel setting listing is 35 #m). DSS 24 has

348 panels and 1716 adjusting screws. The rms surface of the individual panels is 0.127 mm and the rms

surface error of the subreflector is 0.125 mm. Since a precision panel adjusting tool was not available,

and in order to reduce the panel setting time, the panel listings were rounded to the nearest ±1/8 of

a screw turn (+0.16 mm). This enabled resetting the entire dish in an 8-h period. The inferred panel

setting accuracy is therefore 0.175-mm rms.

Figure 14 is a map differencing (DSN010 - DSN008) that verified repeatability and confirmed co-

ordinate geometry and pixel registering accuracy. Before scan DSN010 was recorded, two panels were

intentionally moved as targets. Panel 23 in ring 3 and panel 23 in ring 5 were translated -1.00 mm. In

the map differencing of Fig. 14, the two panels appear in the correct location (within the boundaries of

the panel masking) and with the correct polarity and within the expected range (the blue color next to

the last in Fig. 14 corresponds to -1.07 mm). (Color images are available electronically.)

Figures 15 and 16 are the far-field amplitude and phase functions, respectively. The figures show

127 × 127 samples to the 51st sidelobe, recorded on May 20, 1994, after panel setting. The samples are

separated by 34 mdeg (in the u, v space), forming a window of ±2.14 deg relative to the antenna main beam

at Ku-band. The far-field amplitude (Fig. 15) shows a well-concentrated and symmetrical pattern, and

the far-field phase (Fig. 16) shows a symmetrical pattern with well-concentric rings as expected. Figure 17

is the derived DSS-24 aperture amplitude function, indicating a well-uniform illuminating antenna, while

the energy rolls off -15 dB just over the edge of the antenna (the last 2 m of the diameter).
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Table 3. Maximum aperture efficiency at rigging elevation angles

referenced to horn aperture.

Parameter

Percent aperture efficiency at

X-band

Percent aperture efficiency at

Ka-band

fla f3b flc fld

Expected e 78.9 4- 1.5 77.6 -l- 2.5 68.2 -t- 3.0 59.9 4- 4.0

Specified --f 72.0 --f 41.0

As built 71.2 =E 3.0 68.83 4- 3.0 21.07 =E 4.0 19.83 4- 4.0

Measured post-holography 77.2 4- 2.0 74.61 4- 2.0 65.14 4- 2.3 61.29 4- 2.7

a42.2 deg.

b 51.5 deg.

c 44.5 deg.

d 40.8 deg.

(These elevation angles were supplied by L. S. Alvarez, "Aperture Efficiency Measure-

ments," DSS-P]_ Antenna RF Performance Measurements, JPL D-12277 (internal docu-

ment), Jet Propulsion Laboratory, Pasadena, California, February 1, 1995.)

W. Veruttipong and D. A. Bathker, op cit.

f Not specified.

Fig. 13. Predicted surface error, map derived from
D_N008. (Note: This represen._ the best a.chlevame

rigging angle surface that wou.la .nave resu.!.teo..n _.ne
1716 screws were ed|usteo prec,seW as specmea oy me
software.) (Color image available electronically.)

Fig. 14. Map differencing (DSN010 - DSN008) that
verified repeetsbility and confirmed coordinate

oNmatry and pixel registering accuracy. Before scan
010 was recorded, two panels were intentionally

moved as targets. Panel 23 in ring 3 and panel 23 in
ring 5 were translated = 1.00 ram. (Color image
available electronically.)

C. Gravity Deformation

Only one medium-resolution (84.8-cm) holographic measurement was recorded at a low elevation angle

of 12.5 deg (Table 1). The normal rms surface error of 0.39 mm was computed at a resolution of 84.8 cm

and is presented in Fig. 18. The systematic component of the antenna deformation was derived by fitting
the data to a set of radial and circumferential polynomials (modified Jacobi polynomials [7], which are

similar to Zernike polynomials, which are more common in optics). The first 18 terms of the modified

Jacobi polynomial are tabulated in Table 4 and are shown in Fig. 19, indicating an rms surface error of

0.29 mm. A slight structural "twist" at the low elevation angle of 12.5 deg is noticed in the result. The

low-order gravity deformation of DSS 24 is predominately astigmatic (80.3 percent), and its symmetrical
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Fig. 15. Far-field (DSN012) amplitude pattern after panel Fig. 16. Far-field (DSN012) phase pattern after panel
setting. (Color image available electronically.) setting. (Color image available electronically.)

Fig. 17. Derived antenna aperture amplitude illumi-
nation (DSN008). (Color image available electronically.)

Fig. 18. Medium-resolution (84.8-cm) error map of the
central 32 m of the antenna surface at 12.5-deg
elevation after panel setting, derived from scan DSN014
(May 23, 1994). The normal rms error is 0.39 mm.
(Color image available electronically.)

(top-down/left-right) component is shown in Fig. 20 with an rms error of 0.26 mm. Figure 21 is the

map-differencing of Fig. 19 from Fig. 18, indicating that the remaining gravity distortion components of

the antenna structure are of higher order or "random." The root sum squares (rss) of the systematic

component and the random component agree well with the total distortion. The predicted gain loss

at angles 33.8 deg away from the rigging angle is estimated at -0.046 dB at X-band and -0.65 dB at

Ka-band. Efficiency measurements at Xoband and Ka-band from the f3 focus indicate a gain loss of

-0.042 dB and -0.575 dB at 33.8 deg from a peak gain at 51.43 deg and 40.8 deg, respectively, agreeing

well with the holography predictions.

The gravity performance of DSS 24 was greatly improved relative to the gravity performance of DSS 13.

It was characterized and analyzed by holography: 4 gravity distortion of DSS 13 causes 2.27-dB gain loss

at 32 GHz at 33.8 deg from the rigging angle.

a D. J. Rochblatt and B. L. Seidel, Holographic Measurements of DSS-13 Beam Waveguide Antenna, December 2, 1991

Through February 6, 1992, JPL D-9910 (internal document), Jet Propulsion Laboratory, Pasadena, California, July 15,
1992.

Ct_ir.-_',_ L _ ,:-_-
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Fig. 19. Systematic component of the low-elevation
error map represented by the first 18 terms of the
modified Jscobi polynomials. The normal rms surface
is 0.29 ram. (Color image available electronically.)

Fig. 20. Astigmatic component of the gravity distortion
represents 80.3 percent of the total systematic
distortion due to gravity. The normal rms surface is
0.26 ram. (Color image available electronically.)

Fig. 21. Random component surface at 12.5-deg
elevation. The normal rms surface error is 0.27 mm.

(Color image available electronically.)

Table 4. Modified Jacobi polynomial decomposition

for gravity deformation characterization.

r_ m C, in. D, in.

0 0 -0.006389 0.000000

0 1 -0.000450 0.000000

0 2 -0.001264 0.000000

1 0 0.001766 0.00243

1 1 0.001961 -0.003240

1 2 0.000329 0.001786

2 0 -0.009939 0.000196

2 1 -0.002407 -0.001486

2 2 -0.001709 0.000767
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III. Conclusions and Recommendations

The JPL MAHST provided DSS 24 with the critical RF performance necessary not only to meet the

project requirements and goals, but to surpass them, transforming DSS 24 to the highest precision antenna

in the DSN. The main reflector panels were set to 0.25-mm rms and the subreflector was positioned in its

focus location as seen from fl at 46.3-deg elevation. New offset curves were derived for the subreflector

position at all elevation angles as seen from fl. Unfortunately, time was not allocated for holographic
measurements from the f3 focus.

It is recommended that in future holographic metrology of newly built DSN BWG antennas, time for
the following measurements be provided:

(1) Low resolution at Ku-band (12 GHz) from fl rigging angle (_45.0 deg) to set the subre-
flector position.

(2) High resolution at Ku-band from fl rigging angle to set the panels.

(3) Low resolution at Ku-band from fl at approximately 37-deg elevation to set the subre-
flector.

(4) Low resolution at Ku-band from fl low elevation (_12 deg) to set the subreflector.

(5) High resolution at Ku-band from fl low elevation to image the surface and derive high-

resolution gravity deformation maps.

(6) Medium resolution at Ku-band from the f3 rigging angle to diagnose misalignments in
the BWG mirrors and characterize the BWG effects.

(7) Medium resolution at Ku-band from the f3 low elevation angle to diagnose misalignments
in the BWG mirrors and their effect on performance.

(8) Medium resolution at X-band (7.7 GHz) to diagnose misalignments in the BWG mirrors

and detect any problems (moding) in the feed.
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Appendix A

Theory

The mathematical relationship between an antenna far-field pattern (T) and the antenna-induced

surface current distribution (J) is given by the exact radiation integral relationship (Fig. A-l): 5

= J(x,y )exp [exp-skz (1-cos)] exp, k(ux +vy)dx'dy'

$

(A-l)

where Z'(x', y') defines the surface S, (u, v) is the direction cosine space, and _ is the observation angle.
For a small angular extent of the far-field pattern, this expression reduces to

/ • i . t ! I
T(u, v) = 3(x', y') exp 3kz exp -Jk(uz +'Y ) dx'dy (A-2)

8

5 D. 3. Rochblatt, op cir.
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Fig. A-1. Antenna geometry.

Equation (A-2) is an exact Fourier transform of the induced surface current. To derive the residual surface

error, geometrical optics ray tracing is used to relate the normal error e to the axial error and phase in a
main reflector paraboloid geometry (Fig. A-2).

l[p,p+pQ]= 1 [ ¢ ¢cos2_1_ APL = -_ "2 cos_ + "_sos-_ j = ecos_ (A-3)

4_"

Phase(APL) = -_--_ cos _ (A-4)

and for a paraboloid,

cos _ = (A-5)

i x 2 + y21 + 4F--------Y-

where F is the antenna focal length.

Allowing for the removal of a constant phase term and substituting Eq. (A-4) into Eq. (A-2),

T(u,v) = exp -j2kF //[ J(x', Y')I exPJ4"_ cos _] expjk(ux'+vu')dx'dy'
$

(A-6)

For processing sampled data, the associated discrete Fourier transform (DFT) is utilized:
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m=...=
r X

T(pAu, qAv) = sxsy

NI/2-1 N2/2-1

E E
n=-N1/2 rn=-N2/2

J(nsx, rosy) exp j2_((np/N1)+(mq/N2)) (A-7)

where N1 x N2 is the measured data array size; sx and sy are the sampling intervals in the aperture

coordinates; n, m, p, and q are the integers indexing the discrete samples; and Au and Av are the sampling

intervals in u, v far-field space. Since the magnitude of the far-field pattern is essentially bounded, the fast

Fourier transform (FFT) is usually used for computation. The solution for the antenna residual surface

error in the normal direction is, therefore,

_(x,y) = _rr 1 + + Y2phas e [expJ2kf(FFT)-l[T(u,v)]] (A-S)4F 2

The spatial resolution in the final holographic map 5 is defined here at the -3-dB width of the

convolving function [4]:

D (A-9)

kN

where D is the main reflector diameter, N is the square root of the total number of data points, and

k is the sampling factor, usually 0.5 < k < 1.0. The lateral resolution is inversely proportional to the

number of sidelobes measured. For a 34-m-diameter antenna, for example, a resolution of 0.337 m in

the final holographic map can be achieved with a data array size of 127 x 127 (16,129) and sampling

factor of 0.794. For a 34-m antenna constructed of 348 panels, this measurement will enable imaging of

each panel by 33 resolution cells. In Figs. 15 and 16, the far-field amplitude and phase are measured on

rectangular coordinates of 127 × 127 with sampling intervals of 34.0 mdeg (the sampling factor is 0.80).
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Figures 17 and 10 show the aperture amplitude and surface error function, respectively, with a lateral
resolution of 0.337 m.

The accuracy in each resolution cell of the final holographic map is [8]

_D
a = 0.0825SNR (A-10)

where A is the wavelength, SNR is the beam peak voltage signal-to-noise ratio, and a is the standard

deviation (accuracy) in recovering the mean position of a resolution cell. The accuracy across holographic
maps varies with the antenna aperture amplitude taper illumination. Results are better at the center

of the dish and gradually become worse toward the edge of the dish. For a uniformly illuminated dish,

accuracy stays relatively constant through most of the dish and becomes quickly worse just at the edge
where the illumination falls off rapidly. Note in Eq. (A-10) that the accuracy is inversely proportional to

the spatial resolution of Eq. (A-9) due to the larger averaging area available at the larger resolution cell.

For a holographic measurement receiver incorporating a multiplier integrator or a divider integrator (for
example, HP8530A), the effective signal-to-noise ratio SNRe can be expressed as [8]

]1SNRe 1 1 1
+ _ + SNR2SNR 2 (A-11)

where SNRt is the test channel SNR and SNR,. is the reference channel SNR.

Phase errors introduced during the measurement due to pointing and subreflector position errors are

removed via a best-fit paraboloid program. The best-fit paraboloid is found by least-squares fitting the

data (residual surface error function), allowing 6 degrees of freedom in the model [3].6 This algorithm

ensures that the minimum adjustment (distance) is computed for the screw adjusters. The least-squares

fit is computed by minimizing S, the sum of the squares of the residual path-length changes:

N 2

S = _-']r(APLi)2Ai
_=1

(A-12)

where Az is the amplitude weighing factor associated with the ith data point, F is the masking operation

that is antenna-type dependent, and APLi is the path-length change at point (xi, Yi, zi). It is correct

to apply the best-fit paraboloid algorithm to either the conventional Cassegrain paraboloid-hyperboloid
or dual-shaped reflector systems, even though the latter does not use a paraboloid as the main reflector.

Both of the reflector antenna designs are, overall, plane-wave-to-point source transformers, differing only
in their intensity field distribution.

The resultant aperture function at the end of this process is defined here as the effective map, r since it

includes all phase effects that are contributing to the antenna performance. These frequency-dependent
effects include the subreflector scattered feed phase function and strut diffraction effects. Removal of

the frequency-dependent effects results in a mechanical map. s By deriving panel adjustments based on

the effective map, the surface shape will conjugate the phase errors, optimizing the performance of the

antenna at a single frequency while degrading the performance of the antenna at all other frequencies.

6 Ibid.

7 Ibid.

s Ibid.
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For antennas operating at a single frequency, this procedure is advantageous. However, many antennas

operate at several different frequencies and require a wide bandwidth performance response. For these

antennas, the mechanical map must be used to derive panel-setting information.

From the mechanical map, surface tolerance efficiency can be computed at frequencies other than the

measured frequency by scaling the residual aperture phase errors (which are now due only to surface

deviations) to other frequencies [5]:

(K)s_rI_ce =20 × logxo

*_m)_rn 2

× EN:I lOampdb'/20

(A-13)

In this computation, it is assumed that the aperture amplitude illumination is frequency independent.

The error introduced in this assumption is thus negligible.

To simplify the discussion on panel settings, the normal component of the residual surface error (En)

is comprised of two parts in this model. One is due to panel misalignment or rigid body motion, and the
second is due to surface error resulting from panel bending: 9

E,_ = Eb + Ep (A-14)

where En is the total surface normal error, Eb is the normal error due to panel bending, and Ep is the

normal error due to panel misalignment.

To improve the antenna surface error due to panel misalignment, panels are allowed to move as rigid

bodies, with 3 degrees of freedom. The panel position correction is computed by least-squares fit. The
derived motion of the panel is then used to compute the needed adjustment at the exact location of each

screw on the panel. Only the pixels (resolution-cell data) projected on the panel are considered in the

computation, with the center of the pixel taken as the criterion of its location. This criterion provides

some averaging near the panel edges, flaring it somewhat with its neighbors. In the panel rigid motion

algorithms, 3 degrees of freedom are allowed: a translation (Eq. (A-5)) at a reference point and two

rotations (tilts) about the radial and circumferential axis (c_ and/3). Screw adjustments at point qi are

computed via

Ep_, = -(S + d_ x tan (_) - (e_/cos (_/)) x tan (_)) (A-15)

where

q, = arctan (ff__F) (A-16)

and F is the focal length of the best-fit paraboloid and RQk is the radial distance from dish center to

panel coordinate center.

9 Ibid.
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Appendix B

Subreflector Position Correction Via Holography

Subreflector position correction is derived from the low-order phase distortion in the antenna aperture

function. The antenna aperture function in holography is derived from the measured far-field complex
(amplitude and phase) function. Zernike or modified Jacobi polynomial and global parameter fit can all

be applied) ° The global best-fit paraboloid is found by permitting 6 degrees of freedom in the model:

three vertex translations (X0, Yo, Z0), two rotations (a, f_), and a focal length (F) change (K).

The least-squares fit problem is solved by minimizing the sum squares of the residual path-length error:

g 2

S = E F( oss 24)(APL4)2Ai (B-l)
i=l

where F(DSS 24) is the masking operator for DSS 24, APL_ is the path-length change, and As is the
amplitude weighing. The minimum for S is found by solving the six partial differential equations simul-
taneously:

lo Ibid.

OS N2 OAPL4
= 2 E F( °ss :4)_APL,A, = 0

4=1

OAPLi
OS _ 2_-_F(Dss 24) _ A PLiA4 = 0
OYo i----1

0S Na
OAPL_

O--_o = 2 E F(DSS 24) _APL_A_ = 0
4=1

OS N2

-_ 2 E F(DSS OAPL4- 24)_APL4Ai = 0
i=l

OS N2 OAPL4
O_ - 2EF(DsS 24)_APL4Ai = 0

i=1

OS N2

OK = 2 E F(DSS O/\PL424) _APL_Ai = 0
4=1

1(1 1)K = _ F'

(B-2)
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After removing systematic pointing errors, the parameters are used to compute the subreflector position

error:

AX = Xo - F sin (/3)

AY =Yo-Fsin(a)

AZ = [Z0 + F{ cos (a) + cos (¢_)}- 2FI

(B-3)
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The Telecommunications Division has built a stabifity analyzer for testing Deep

Space Network installations during flight radio science experiments. The low-

frequency part of the analyzer operates by digitizing sine wave signals with band-

widths between 80 Hz and 45 kHz. Processed outputs include spectra of signal,

phase, amplitude, and differential phase; time series of the same quantities; and

Allan deviation of phase and differential phase. This article documents the digital

signal-processing methods programmed into the analyzer.

I. Introduction

The recently developed radio science stability analyzer (RSA) is an instrument for real-time testing

and certification of Deep Space Network (DSN) equipment to be used during gravity wave and planetary

occultation experiments [1]. Two sets of equipment can be tested: (1) the radio science open-loop receiver

and (2) the 100-MHz frequency standards and distribution network of the DSN frequency and timing

system (FTS). Signals from either of these two sources are downconverted to low-frequency band-limited

sine wave signals. The last stage of the open-loop receiver, called radio science intermediate frequency

to video (RIV), produces sine wave signals with frequencies and bandwidths ranging from 150 Hz in

an 82-Hz band to 275 kHz in a 45-kHz band; these depend on the choice of RIV filter. RIV signals

are processed directly by the low-frequency RSA circuitry. Pairs of 100-MHz FTS signals are processed

in a portion of the RSA called the 100-MHz interface assembly (100 MHz IA), which resides near the
frequency standards. The 100 MHz IA mixes the two signals at 10 GHz and downconverts the mixer

output to a 100-kHz sine wave signal in a 30-kHz bandwidth, which is sent over a fiber-optic cable to the
low-frequency RSA circuitry.

The low-frequency circuitry has two methods for converting a band-limited sine wave signal to digital

information. First, the signal can be sampled with a 16-bit analog-to-digital (A-D) converter clocked
by a synthesizer. In this mode, two signal channels can be accommodated with the aim of extracting

their differential phase. The maximum total data rate is about 230 kilosamples per second. Second, if

the carrier frequency is known within approximately 0.1 Hz, it can be mixed with the output of another

synthesizer set to this frequency minus 1 Hz. The 1-Hz mixer output is filtered and hard limited by a

zero-crossing detector, and the up-crossing times of the resulting sequence of pulses are captured by a

time-interval counter according to the "picket fence" method [4].

The principal aim of processing the A-D data is to reduce their bandwidth by a user-selected factor,

and to extract the amplitude and phase modulations that constitute the sidebands of the sine wave signal.
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The phase of two channels can be combined into differential phase. Three output types can be generated:

spectrum of the signal and its modulations, time series of the modulations, and Allan deviation of phase.
As described below, the digital signal processing operates in three alternate modes, called full band,

medium band, and narrow band. The choice among these depends on the desired bandwidth reduction
factor. The 1-Hz zero-crossing data are processed in the same way as sequences of phase residuals

produced by narrow-band processing.

The digital signal processing (DSP) methods are designed to take advantage of the architecture of

a floating-point vector processor based on the 40-MHz Intel I860. Most of the heavy lifting is done by

manufacturer-supplied vector library routines, which include fast Fourier transform (FFT) and finite im-

pulse response (FIR) filtering routines. Throughputs of approximately 25 million floating-point operations

per second were achieved.

The remainder of this article explains the DSP methods in some detail.

II. Signal Properties

A. Radio Frequencies

In any test setup, there are two radio frequencies of interest. Let fmlx be the frequency at which the

primary comparative mixing takes place, and let fref be the reference frequency for phase noise and Allan

deviation. For a RIV test, fmix = fref = 2295 MHz (S-band) or 8415 MHz (X-band). For an FTS test,

fmi× = 9.9 GHz, fref = 100 MHz. This is because the phase of the 100-kHz output of the 100 MHz IA is

approximately 99 times the difference between the phases of the two 100-MHz inputs. Phase results are

scaled by fref/fmi×.

B. Analog Sine Wave Signal

The downconverted signal is assumed to lie in an analog frequency band with the center at fofst and

width Wvid < fofst, which are parameters of the RIV filter or the 100-MHz IA. The frequency fofst can

be positive or negative; see the discussion of polarity below. Somewhere in this band is the carrier.

Except in full-band processing, it is assumed that the signal consists of a carrier with weak sidebands;
the total carrier-to-noise ratio should be at least about 30 dB. (This instrument is a stability analyzer,

not a receiver.)

C. Digitized Sine Wave Signal

The analog signal is sampled by a 16-bit A-D converter at the sample rate fs, which has to be chosen
so that the analog frequency band is aliased into the Nyquist band (0, .1'8/2) or (-fs/2, 0). In this way,

both sidebands of the carrier are preserved. Each RIV filter is designed for a certain fs- In any case, an

acceptable f8 can be obtained from the formulas

(Ifof_tl _ 0.5),m = int Wvid

4 lfof_tI
f_ - 2m+l

where int (x) is the integer part of x. This choice of f_ centers the aliased signal band in the Nyquist
band. If the actual carrier frequency is close to fof,t, however, then distortion in the analog signal or A-D

converter may cause spurious harmonics to appear near the carrier. To push the images of the lowest

harmonics away from the carrier, one can offset the sample rate slightly, according to the formulas

a = 0.944272, ( ( )) 4 [fof, tl
Ifof_tl _ 0.5 , f_ -

m = int a Wvid 2m + a
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Thenumbera is related to the golden ratio (v_- 1)/2.

D. Polarity

In the radio science receiver, the 2.3-GHz or 8.4-GHz signal is downconverted and filtered three times

until the carrier is at 10 MHz +fofst, where fofst can be positive or negative. At this point, the spectrum

or phase polarity of the signal is positive, i.e., the same as the radio frequency (RF) signal. The fourth

downconversion by the 10-MHz local oscillator and subsequent filtering, therefore, yield a signal whose

polarity equals the sign of fofst. Moreover, the sampling can flip the polarity again. To make better sense

of this, it is good to think about the two-sided representation of the signal. One side of the signal has
the right polarity (positive), and the other side has the wrong polarity. If we let

nb_e =nint (_s_t) , Spol = sign (fofst - nbasefs)

where nint (x) is the nearest integer to x, then 8po I is the polarity of the digitized signal, the side of

the analog signal with the right polarity lies between nbasefs and (nbase -t- Spol/2) fs, and the side of the
digitized signal with the right polarity lies between 0 and SpoJs/2. The user has the responsibility of

entering fof_t with the correct sign.

III. Full-Band Processing

This mode allows the user to see a snapshot of the signal in the time and frequency domains before

proceeding to a closer view. The user selects an FFT size N (2048 or 4096). A frame of A-D data

x[0], • .-, x[N - 1] is collected. These can be plotted against elapsed time in the frame, after scaling them

back to volts at the A-D input (10 V = 32,768). A spectral estimate of the frame is computed by scaling
the frame so that _-_x[n] 2 -- 1 and calculating

N-I 2,2 n_ ° x[n]uo[n; N, 5] exp (-i27rnk/N)sx[k]= = k = O,...,N/2 (1)

where uo[n; N, 5] is the 0th-order, N-point "trig prolate" data taper [5] with bandwidth parameter w = 5

(Appendix B), scaled so that _ u0[n] 2 = N. The sidelobes of this taper (_05 in Fig. 1) are low enough

so that no leakage from the carrier should be visible in the sidebands. The array 10 log 10Sz[k] (labeled
dBc/Hz) is plotted against the frequency array

f[k] = fs (nbase Jr- SpoLk/N) , k -- 0,..., N/2

which shows the side of the signal with the correct polarity. The user chooses how many of these frame

spectra are averaged into a run spectrum. The frames do not have to be adjacent; it is all right to lose
data while processing the previous frame.

The resolution bandwidth of the spectral estimate, given by

f_N
Wnb--

(_ u0[n])_
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Fig. 1. Spectral windows: full band L_,05,

medium band _}4, and narrow band P-4.

has two purposes: (1) It gives the user a rough idea of the resolution of the spectral plot, and (2) it allows

the user to estimate the power of a bright line (narrower than Wnb) in dBc by adding 10log 10Wnb to the

dBc/Hz reading at the peak of the line.

Because the main purpose of this function m a check on what sort of signal is actually in the Nyquist

band, it might be preferable to scale the spectrum to dBm/Hz or dBV2/Hz instead of scaling the frame

to power 1 and claiming that we are seeing dBc/Hz. Then, for example, if no signal were present, the

display would show the correct spectral density level of the noise.

IV. Medium-Band Processing

In this mode of processing, we assume that the sampled signal consists of a carrier with weak sidebands.

The purpose of the processing is to reduce the bandwidth of the signal by a modest amount (up to 128

with current parameters), remove the carrier, and measure properties of the sidebands.

A. z-Frame Production

The user having selected an FFT size N_t and a decimation factor r, both powers of 2, define the frame

size Nxf = rNfft. In order to limit memory usage, the frame is divided into nbf adjacent batches of size

Nxb, a divisor of Nxf that is not more than some maximum batch size (currently 8192). One batch at a

time is processed. We use the first batch to measure the carrier frequency by a simple vector computation
called "Pony, Part 1" (Appendix A). Let 5 be the measured frequency in radians per sample, the sign of

5 being Spol, and let u = exp(-iS). Let x[n], n = 0,..., N×f - 1, be the A-D x-frame. A complex z-frame

z[rn] of size Nzf < Nfft is computed by

zl[n]=x[n]_-", n = o,..., Nxf- 1 (2)
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nh--1

z[n] = E hr[klzl[rn + k], n = 0,.-., Nz, - 1 (3)

k=O

where hr is a lowpass FIR filter designed for decimation by r (Appendix B). Its length nh is assumed to

be a multiple of r (currently 16r), and it follows that we can take Nzf = Nfft - nh/r -t- 1. The ripples of

the frequency response of hr above the decimated Nyquist frequency (Fig. 2) are low enough so that the

aliased image of the wrong side of the carrier at -5 barely appears above the 16-bit quantization noise

in a spectrum output with simulated data.

The computation in Eqs. (2) and (3) is carried out batch by batch, the z-frame being built up in nbf

steps by an overlap-add operation. The result is a complex representation of the carrier (at zero frequency

now) and sidebands within fs/(2r) of the carrier. Because frames are processed independently, it is all

right to lose A-D data between frames while carrying out further processing on completed z-frames.
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Fig. 2. Frequency response of the FIR filter for Iowpass decimation.

B. Signal Spectrum

The signal spectrum is obtained as a two-sided spectrum of the z-frame. First, the z-frame is scaled to

unit energy. Most of the energy is in the carrier, which is now at dc (zero frequency). To prevent this dc

energy from leaking into the rest of the spectrum, we get rid of most of it by removing a linear fit from

the frame. We call this kind of preconditioning operation a calibration. The specific example used here

can be defined on a general array y[0],..., y[N - 1] as follows: Let M be an integer approximately equal

to N/6. Compute the centroid points

M-1 N-1
1 1

(to,Yo) = _ _ (n,y[nl), (t,,yl) = _ _ (,,,y[n])
n=O n=N-M

and pass a straight line co + cln through them. The calibrated array is given by y0[n] -- y[n] - co - cln.

If y itself is a straight line, then Y0 = 0.

The choice of this particular operation (especially the N/6) for spectral preconditioning is admittedly

seat-of-the-pants engineering. Perhaps removing a conventional least-squares fit would do as well. To
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deal with time series modeled by processes that are possibly nonstationary but do have stationary first

or second increments, it is desirable to subtract some linear fit, not just the mean. This makes all frames

statistically identical, so that the average of the spectral estimates of J disjoint frames converges as

J -* oc, just as in the theory of stationary-process spectral estimates.

The spectrum and frequency arrays are now given in terms of the calibrated array z0 by

r Nzf-1 (_i27rnk_ 2

Sz[k] = fsN, f[H_(f[k])12 _ zo[n]uo[n;Nzf,4]exp \ _ ]l

f_ k
f[k] - rgfft

where k = -Nfft/2 + 1,-.., Nfft/2. The squared magnitude of

nh-1 (-i2rnf _
H_(f)= _ hr[nlexp\ _ ]

n=0

is used for equalizing the spectrum against the lowpass decimation filter. As before, a plot of 10 log loSz [k]

is labeled dBc/Hz. Points corresponding to frequencies with absolute value below 4fs/(N_fr) or above

95 percent of the Nyquist frequency 0.5f_/r are not displayed. The low cutoff hides doubtful values near

dc; the high cutoff hides a 3-dB rise at the Nyquist frequency caused by the combination of lowpass

decimation, noise folding at the Nyquist frequency, and equalization. The user chooses how many of

these frame spectra are averaged into a run spectrum. The resolution bandwidth is given by

AN.t (4)
wob - r (V.u0[n])

C. Amplitude and Phase

Extraction of amplitude and phase residuals starts with a rectangular-to-polar operation on the

z-frame. The result is a complex "amplitude-phase" frame ap[n], n = 0,..., N_f - 1, whose real part

is the amplitude of z[n] and whose imaginary part O[n] is the phase of z[n] wrapped into [-_r, _]. The

amplitudes are replaced by their fractional deviations from the mean. The phases are unwrapped into

phase deviations ¢[n] (replacing O[n] in the ap array) by the following algorithm:

¢[0] : 0, ¢[n] = ¢[n - 1] + mods (0[n] - O[n - 1], 2_), n : 1,..., N,f - 1

The symmetric residue function mods is defined by

mods(x, a) = x - a nint (x/a)

The correctness of this algorithm requires only that IA¢[n]l < 7r. The mods function also plays the central

role in the unwrapping algorithm described in Appendix C.
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The amplitude or phase residuals can be displayed as time series for the frame. Often, the phase
residuals are dominated by a ramp (a frequency offset), so that it is desirable to subtract a linear fit

to reveal the random fluctuations. This can be done with the calibration operation described above in
connection with spectral preconditioning.

For better or worse, amplitude and phase spectra are computed together by a single complex FFT

instead of two real FFTs. The real and imaginary parts of the ap[n] array are calibrated as above, tapered
by u0[n; Nzf, 4], and zero-padded to gift elements. Let AP[k], k = 0,..., Nfft - 1 be the complex Fourier

transform of the resulting array. The transforms of the real amplitude and phase frames are given by

A[k] = _1(AP[k] + AP[Nfft - k]*)
1

¢[k] = _ (AP[k] - AP[Nfft - k]*)

for k = 0,..., Nfft/2, where AP[Nfrt] is defined to be AP[0]. The one-sided amplitude and phase spectra
for the frame are given by

r r 12
Sa[k] = fsNzf [Hr(f[k])l 2 JA[k]J2' S¢[k] = fsNzf [Hr(f[k])i 2 I_)[k] (6)

with frequency array f[k] = (fs/(rNtTt))k. We apply the same low- and high-frequency cutoffs as we did

with the medium-band signal spectrum. The absence of a factor of 2 in the scaling factor of Eq. (6) [see
Eq. (1)] gives a single-sideband presentation of the spectra, so that they can be labeled dBc/Hz when

converted to dB. If a factor of 2 were present in the numerators, the unit for S¢ would have to be rad2/Hz.
As before, a number of frame spectra can be averaged into a run spectrum. The resolution bandwidth is
given by Eq. (4).

V. Narrow-Band Processing

This processing mode also assumes that the signal consists of a carrier with weak sidebands. Its

purpose is to achieve an arbitrarily large reduction in data rate, limited only by the user's patience. The

stream of A-D data is reduced to a sequence of average amplitude and phase residuals, the averaging
time being chosen by the user. The phase residuals from two channels can be combined into a differential

phase. These streams of band-reduced data can be processed into time series, spectra, or Allan deviations
(phase or differential phase only).

A. Amplitude and Phase Extraction

The stream of A-D data is divided into batches of size N×b, which must be adjacent for the entire run.

There is a minimum and maximum batch size (now 200 and 8192). A frame consists of nbf batches, or

Yxf = nbfNxb A-D data, where nbf can be any positive integer. Each batch is reduced to one sample of
average amplitude and phase, and nbf batch samples are averaged to produce a frame sample. The user

has to choose gxb and nbf (with the bounds on gxb enforced by the user interface) to achieve the desired

reduced sample rate fs/Nxf. Unless there are phase tracking problems (see below), the results for a fixed
frame size should depend little on the number of batches per frame.

Let us represent the digitized signal by

x(t) = A(t) cos ¢(t)

where _P(t) is the total phase, which one can think of as wt + _ + ¢(t), where ¢(t) is a phase residual.
The point is that O(t) is an intrinsic part of the signal (except for an unknowable additive constant
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21rno),whilew and _b(t) trade off with each other. We assume that A(t) and _(t) satisfy two imprecisely
given conditions, called here the assumptions of small local variations: (1) Over a batch, the fractional

variations of A(t) from its mean are much less than 1, and (2) over at least two batches, the total phase

differs by much less than one radian from a first-degree polynomial fit (constant phase offset plus constant

frequency). Over longer time spans, the phase might deviate from a straight-line fit by many radians.

Let the batches of a run be indexed by k, k = 0, 1,..-. Batch k starts at time tk = kNxb/fs. For

the moment, let t run over the sequence of times tk + n/fs,n = 0,..-,Nxb - 1, in batch k. The Pony

computation (Parts 1 and 2) of Appendix A is used to estimate the local frequency, amplitude, and phase

of the batch. It gives 5k (radians per cycle), Ak, and 0k such that

z(t) A, cos (sd,(t - tk) + Ok) (T)

(The sign of 6k is taken to be the same as the polarity Spol.) Write o3k = 5k f,. With the assumptions of
small local variations, it turns out that, to first order in these variations,

Ak (8)

_Pk := ffok(tk -- tk) + Ok ._ _k (mod 27r) (9)

where tk, -4k, and _k are the averages of t, A(t), and ¢(t) over batch k. It is important to note that the

approximation [Eq. (9)] of Ck to (_k (mod 2_r) is better than the approximation of the phase on the right

side of Eq. (7) to (I)(t) because the errors in 6k and 0k tend to compensate each other in just the right

way.

The average amplitude residual for batch k is computed by ak = .4k/A0 - 1. The computation of

phase residuals is more delicate. According to Eq. (9), Ck, to first order, is the average total phase of
the signal in batch k, modulo 27r. There are two problems. First, there is the 21r ambiguity. Second,

we would like to have a phase residual instead of the large total phase. Let us use the initial measured

frequency o30 and phase Oo to calibrate the total phase to a phase residual

¢(t) = ¢(t) - o30 (t - to) - 0o (10)

where t now runs over all time beyond the starting time to of the run. Note that q_(t) depends on the

calibration parameters o30, 00, so it is not intrinsic. Its average over batch k is

= 'i'k - o3o(Ek- to) - 0o (11)

These are the batch phase residuals that we would like to compute. From Eq. (9) it follows that, to first

order,

Ck _ _bk - O3o(tk - to) - _o (mod 2zr) }
q_o _ 0 (rood 21r)

(12)

To a good approximation, then, we know the Ck, modulo 27r. Because of the assumption of small local

variations, we also can predict, with an error < 7r, how many radians the average total phase advances
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from one batch to the next, given its previous behavior. With this information, and with the measured ¢0

assumed to be 0, the 2_r ambiguity can be removed sequentially from all the Ck by means of a second-order

unwrapping algorithm given in Appendix C. It is the same algorithm, with different parameters, that is

used for unwrapping the picket fence time-interval measurements that capture the 1-Hz zero crossings.

The algorithm also produces a sequence of prediction errors zk that satisfies [zk[ <_ lr. It measures how

much the current phase differs from what we think it should be, based on the behavior of the previous

batches. If any [zk[ exceeds a certain threshold, now set at 7r/2, a caution is issued to the user. Perhaps

the frequency is changing so fast that the assumption of small variations fails for the batch length Nxb.

In effect, the analyzer may be losing phase lock, like a phase-locked loop whose bandwidth is too small.

If this happens, the user can try decreasing N×b. As mentioned above, the amplitude and phase residual

averages for a frame are obtained simply by averaging nbf batch values. Thus, if the user has to decrease

Nxb to keep the analyzer in lock, he can maintain his chosen averaging time by increasing nbf.

B. Differential Phase

By differential phase we mean some method of subtracting the phases of two channels that are being

sampled simultaneously at the same rate. There are two flavors of differential phase processing. In S-S

or X-X differential phase, it is assumed that both channels (1 and 2) originate at the same RF band and

are downconverted to the same frequency. In this case, the total phases should not be too far apart, and

so it makes sense to compute the batch averages

_fCk = Ck(1) - ¢k(2) - 27rn0

where (1) and (2) identify the two channels and no is the integer that makes -_r < _(I)0 _< 7r. Applying

Eq. (11) to both channels, we obtain

6(1)k = Ck(1) - ¢k(2) + (Qo(1) - &o(2)) (tk - to) +/_o(1) - _o(2) - 27rno (13)

which gives the intrinsic quantity _f_k in terms of measured quantities.

The original design of the analyzer included a sample-and-hold unit so that channels 1 and 2 could be
sampled simultaneously. This is no longer the case and, hence, the channel samples have to be interleaved

at total rate 2fs through the A-D converter: (1), (2), (1), (2), -.-, where a channel 1 sample is paired with

the following channel 2 sample. To deal with this situation, we use current batch frequency estimates to

adjust the total phases of the two channels as if they were sampled halfway between the channel 1 sample

time and the channel 2 sample time. The phase advance of channel 1 over a delay 1/(4fs) is estimated

as 7rfvid(1)/(2fs), where fvid(1), the current estimate of the analog carrier frequency of channel 1, is

computed by fvid(1) ---- fs(nbase(1) -{-5k(1)/(27r)). A similar correction of opposite sign is applied to the

channel 2 total phase. Consequently, a correction

lr 1

-_ (nbase(1) + nbase(2)) + _ (Sk(1) + 5k(2))

has to be added to 6(I)k.

In S-X differential phase, channel 1 is downconverted from 2295 MHz (S-band), channel 2 from

8415 MHz (X-band), or the reverse, and we are required to produce some version of

3

S band phase - _-_ (X band phase)
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In a preliminary design, the analyzer simply computed the nonintrinsic quantity Ck(1) -- (3/11)¢k(2),

which depends on the initial measured frequencies o50(i), i = 1,..., 2, and which, if a linear fit is not
removed, has a random ramp component that depends on these measured frequencies. The current

design uses a more objective method in which the measured frequencies are replaced by a priori known

design frequencies wo(i) = fsoo(i). These are computed from the user-provided analog offset frequencies

fofst(i) by wo(i) = 2r(fofst(i) - fsnbase(i)). One can then produce phase residuals Ck(i) = Ck(i) + (&0(i)

-wo(i))(tk --to) that start at zero but show ramps if the actual channel frequencies differ from the design

frequencies. S-X differential phase is now just Ck(1) - (3/11)¢k(2), which shows a ramp if the frequencies

of the S- and X-channels are not related in exactly the right way. In contrast with the S-S or X-X

situations, the first sample of this differential phase is zero; we are calibrating for frequency only and not

attempting to measure the absolute synchronization of the two channels.

As with amplitude and phase, the batch averages of differential phase are combined into frame averages.

C. Time Series

The stream of narrow-band samples (frame average amplitude residuals, phase residuals, or differential

phases) can be collected into a buffer and plotted against time. In the present software, we use a buffer

management scheme that automatically subsamples the buffer by a factor of 2 when it fills up, crunches it

to half its size, and begins to accept data at half the previous rate. At any time during the run, the buffer

contains a record of the entire data stream, subsampled by some power of 2. Because phase residuals
and differential phases are likely to be dominated by a straight line, we normally apply the calibration

operation described in Section V.B before plotting them so that random fluctuations can be seen.

D. Spectrum

Any of the streams of narrow-band samples can be subjected to the same spectral estimation process.

Because it takes longer to collect the data arrays, there is incentive to use the narrow-band data more
efficiently than the medium-band data. In compensation, there is more processor time available per

A-D sample for expensive postprocessing. We use an unweighted Thomson multitaper spectral estimator

[10,7 (Chapter 7)] with orthogonal data tapers (trig prolates) computed by the author [5] (Appendix B).
The user chooses a FFT size Nfft, a power of 2. At the start of the test, we compute an array of K

orthogonal data tapers uk[n; Nfft, w], n = 0,..., Nfft - 1, k = 0, • • •, K - 1. The value of K depends on w

and on the sidelobe level we wish to tolerate in the frequency responses of the uk. In the present design,

w = 4, K = 4. An array of samples x[0],...,x[Nfft - 1], called a "narrow-band frame" (nbframe), is

preconditioned by the calibration operation of Section V.B. Then K distinct "eigenspectra" So," • •, SK-1

are computed by applying the tapers and a real FFT, giving

yx f N_I 2Skim] -- Nfftfs n=0 x[n]uk[n; Nfft, w] exp (-i2_nm/Nfft)
(14)

with frequency array f[m] = (fs/(NxfNfft))m, m ---- 0,." ,Nfft/2. The spectrum of the nbframe is
computed by averaging the eigenspectra:

K-1

S[m] = (15)K _ o%[m]
k=O

and the overall run spectrum is computed by accumulating and averaging all the nbframe spectra. One

advantage of this method is that, over smooth regions of the true spectrum, the variance of S[m] is about

K times smaller than the variance of each Sk[m]. With a single-taper method, variance could be reduced

28O



by using shorter nbframes or averaging the spectrum over frequency. Either of these methods increases
the resolution bandwidth.

To prepare the spectrum for display, we cut off frequencies below (fs/(NxfNfft))w and do the usual
conversion to dBc/Hz. The resolution bandwidth Wnb is given by

1 _ 1_ I 1
Wnb g k=0 Wnb'k

where

W_b,k = ANnt
(Z In])2

is the resolution bandwidth of Sk. Although it is not apparent, Wnb is proportional to 1/N_t; one can
use Nfft to trade off resolution against run length.

The user should be aware that the spectral window of this method is not bell shaped but approximately
rectangular with ripples across the top. If the spectrum has a bright line whose width is of the order of

one FFT bin or less, the image of the line may appear to have four small peaks at the top. These are

artifact_of the method and do not indicate a splitting of the line. (See Appendix B and Fig. 3.)

In the current version of narrow-band processing, we have achieved bandwidth reduction by unweighted

averaging: The batch samples of amplitude and phase are, to first order, unweighted averages of these

quantities, and frame samples are unweighted averages of batch samples. Consequently, a calculated

--4 -2 0 2 4

FFT BIN

Fig. 3. Shapeof a bright line for narrow-
band spectrum.
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spectrum for frequencies between 0 and the Nyquist frequency f_/(2Nxf) is not, strictly speaking, an
estimate of the spectrum of the quantity in that frequency range, but rather an estimate of the spectrum

of the averages of the quantity over an averaging time r0 = Nxf/fs, sampled at rate 1/_o. This spectrum
suffers from both aliasing and distortion. The Pony method of extracting batch samples of amplitude

and phase leads inherently to this situation for frames consisting of one batch. The main decision was
how to deal with further bandwidth reduction: whether to use a lowpass decimation filter, a bank of such

filters, or simply to extend the situation with unweighted averaging. The advantages of the chosen design

are simplicity, consistency, and flexibility in the choice of decimation factor (frame length), which can be

large enough to exhaust the patience of any user.

E. Allan Deviation

The stability analyzer can compute the Allan deviation of frame samples of phase or differential phase

for an array of averaging times r that are powers of 2 times the frame duration _'0. It was required to

remove an estimate of linear frequency drift from the results. For a drift estimator, we use the simple

three-point estimator suggested by Weiss [11]. Although the basic method is covered in [2] and [3], we
run through the computations for a particular value of _- = nTo. Let the stream of phase samples be

¢0, ¢1,'" "- At a given point in the run, we have accumulated sums of the first and second powers of ra

second differences of ¢_ with stride n, namely,

m+l

= (A2m '_P
Sp Z _" nwnj/ ,

j=2

p=1,2

where m __ 4. (The author realizes that the sum for p = 1 telescopes.)

subsampled version

We have also collected a

¢0, Cd, _)2d, " " " , ¢Id

of the whole run so far by the same buffer mechanism used for time series above. The calculations proceed

as follows:

Dc = ¢2n_ - 2¢,_c + ¢0 (unscaled drift estimate)

v_s2 (__)2 (sample variance)
m

V=V+ -DCknc/ ]
(drift correction)

v = (rn- 1)(0.8776 + 0.0643e -(1/2)(m-4))
(degrees of freedom)
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(Allan deviation with error bar)

The formula for degrees of freedom is an empirical formula fitted to the author's numerical results for the

random-walk-of-frequency model of phase deviations (f-4 noise). The error bars, which are really the

square roots of "one-sigma" error bars for a_(T), should be conservative for fZ noise, _3 > -4.

Vl. Zero-Crossing Processing

To capture the up-crossing times of the 1-Hz square wave, a preliminary measurement of the nominal

period p of the square wave is taken with the interval timer, which is then set to measure the time

intervals between each subsequent up-crossing and the next pulse of a 10-Hz train of reference pulses,
the "picket fence." These readings are unwrapped into a sequence of time residuals, as described in

[4]. The algorithm, which is really the same as the one used for unwrapping the narrow-band phase

deviations (Appendix C), need not be reproduced here. The time deviations produced by this algorithm
are multiplied by the scale factor

27rfref

ImixP-

to give phase deviations that can be used like the batch averages of phase deviation that come from the

narrow-band process. For time series and Allan deviation, we allow only one batch per frame, as the

1-second period is natural for the user. For spectrum, an arbitrary number of batches per frame is allowed

so that users can shrink the Nyquist frequency below 0.5 Hz as much as they want.
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Appendix A

The Pony Calculation

This is a batch method for computing the frequency, amplitude, and phase of a sampled sine wave.

It comes from a method of harmonic analysis called Prony's method [6 (Chapter 11)], which analyzes

a waveform into the sum of n sine waves. The calculation we call "Pony" is simply a modification of

Prony's method for n = 1.

I. Part 1: Frequency

Let the data array be x[0],..., x[N - 1]. If x[n] were exactly of form A cos (on + 0), then we would

have

x[n + 11 + x[n- 1] = (2 coso)x[n], n = 1,...,N- 2 (A-l)

On the other hand, if x[n] is a noisy cosine wave, then let us estimate coso by projecting the vector

x[n + 1] + x[n - 1] orthogonally onto the vector x[n]. The computation is

N-3 1](1/2) (z[0]x[1] + x[N - 2]x[N - 1]) + _-_=1 x[n]x[n +
C---- N-2

o = arccos (c) in [0, r]

if Icl _<1, else o goes to the nearest port in the storm, 0 or _r. One may also change the sign of o according

to polarity considerations.
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For use in Part 2 and elsewhere, a single-precision complex array of powers un, n = 0, ..., N - 1,
where u = exp (-io), is generated by a vectorized algorithm that we illustrate for the case N = 16.

Compute the dyadic powers u 2, u 4, u s in double precision and convert them to single precision. Lay down
the powers u °, u s in the array, multiply them by u 4, and lay down the products to give u °, u4, u s, u 12.

Multiply by u 2 to give u °, u 2, • .., u 14. Multiply by u to give the desired array. For large N, the successive
steps get more and more efficient for a vector processor.

II. Part 2: Amplitude and Phase

Having estimated the frequency, we use it to estimate amplitude and phase. Let a = A cos 0, b = A sin #,
and solve the least-squares problem

x[n] _acos on -bsin on, n=O,...,N-1

for the parameters a and b. The coefficients of the normal matrix can easily be expressed in closed form,
and the solution computed as follows:

N-1 N-1

xc = E x[n]cos on, x_ =- E x[n]sin on (A-2)
n=O n=0

1[ i//sinoN1cc=_ N+cos (o(N- s_n o j ' 1[ sin oN]ss= _ N-cos(o(N-1))_j

1 sin oN

cs= _sin(o(N-1)) sin o

D = cc-ss- cs 2

a = sS.Xc+CS.X, b= cS-Xc+CC.X,
D ' D

A = x/_a2 + b2, 0 = angle(a + ib)

Most of the work is in the in-phase and quadrature mixing operation [Eq. (A-2)], which uses the array
un whose generation is described in Part 1.

The calculation given here can be regarded as an improvement on the approximations

2 2

a ._ -_ x c , b ,._ -_ x _

which are exact if oN is an integer. It has been observed [8] that these approximations are inadequate

if oN is not an integer, because the double-frequency terms have not entirely been eliminated by the
mixing-filtering operation, Eq. (A-2).
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Appendix B

Windows and Filter

The data tapers and lowpass decimation filter are based upon the author's "trig prolate" approxima-

tions [5] to the discrete prolate spheroidal sequences of Slepian [9]. The notation uk In; N, w] is used here

in place of the notation uk [n; N, w/N, w] in [5].

Figure 1 shows the frequency responses (spectral windows) of the data tapers used for spectral estima-
tion. The _0s curve applies to full-band spectrum, _04 to medium-band spectra, and _4 to narrow-band

spectra. Note that 124 is the average of the windows of the four eigenspectra, Eq. (14), that are averaged

into the total spectrum, Eq. (15). The expectation of a spectral estimate is the convolution of the true

spectrum with the spectral window. The _/0_ windows are bell shaped. Figure 3 plots _4 on a linear

scale against a two-sided frequency axis to show how a narrow bright line would appear in the spectral
estimate if it were plotted on a linear scale. The ripples at the top will not be so prominent on a typical

dB scale.

The N-point FIR lowpass filter used in medium-band processing before decimation by r is built in a

conventional way from the trig prolate window u0[n; N, w]. The formula for it is

((N-l))h,.[n] =uo[n;N,w] sinc 2zrfh n _ ,
n=O,...,N-1

normalized so that _ h_-[n] = 1, where

0.4 sin x

w = 4, N = 16r, fh = --_-, sinc x -- x

Figure 2 shows the frequency response of this filter for r = 2. The response is essentially the same for
all r if frequency is scaled according to the x-axis of Fig. 2. Only one table is needed to represent the

frequency response for the purpose of equalizing the medium-band spectra.
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Appendix C

Phase Unwrapping Algorithm

This algorithm produces the narrow-band phase residuals Ck from the carrier frequency and phase
estimates extracted from each batch by the Pony calculation. It is assumed that the batches all have

length Nxb and are adjacent. Recall the definition, Eq. (5), of the mods function. Let the damping

constant A be a number between 0 and 1. In the following algorithm, ¢_ is related to Ck of the main text
by ¢' k = Ck - 50(N×b -- 1)/2.

_) = 0o

Zo = 0,¢o = 0, qo = 0

Fork= 1,2,...

Obtain the batch frequency and phase 5k, 0k.

¢_ = (Ok -- o0)(Nxb -- 1)/2 + 0k ! Ck is total phase (I)k mod 2rr.

zk = mods (_b_ - ¢' - o0Nxb - qk-1, 27r) I prediction error.k-1

If ]zk[ > 7r/2 (say), then issue caution "losing lock" to user.

Ck = Ck-1 + qk-1 + zk [ output phase residual.

qk = qk-1 -[- )tZk [ lOW pass-filtered ACk.

Next k.

Note that qk, zk satisfy

qk=(1--A)qk-l+AAg_k, zk=Aq_k--qk-1

This says that qk is a lowpass-filtered version of ACk, and Zk is a prediction error for ACk. The basis of

the algorithm is (1) the assumption that Izkl < 7r and (2) the knowledge of zk modulo 2r, namely,

zk = A_k -- &oAt-k - qk-1 -- A_'k - bON×b - qk-1 (mod 21r)

Any value for A in [0, 1] is meaningful. If 0 < A < 1, then, in effect, a weighted average of previous phase

advances, with weights (1 - A) n, is used to judge what the current phase advance should be. In the script

files that drive the software, A has been set to 1/10. This provides some stability against large errors
while maintaining the ability of the algorithm to follow frequency drifts.
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Errata

In "Adaptive Line Enhancers for Fast Acquisition" by H.-G. Yeh and T. M. Nguyen, which appeared in

The Telecommunications and Data Acquisition Progress Report 42-119, July-September 1994, November

15, 1994, the plot in Fig. 14 was incorrectly situated. The correct figure is provided below.
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Fig. 14. Magnitude of the Input data to the ALE, ALEDF, AND ALECA.
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